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PREFACE 

When it comes to specifying performance parameters of positioning 
and measuring devices for moving and measuring to nanometre 
precision, one immediately comes across the problem of defining what  
one actually means by various terms in common usage. What is 
accuracy? Is it the same as precision? Is non-linearity the same as 
linearity? What reference plane do you take to define roll, pitch and 
yaw? Of course many international standards have been written to help 
sort this out, and indeed they do help. But there are contradictions and 
ambiguities. Some standards warmly embrace the concept of a ‘true’ 
value, others abhor the idea. Some talk of bias, others trueness and 
systematic error. What terms should one adopt? In an attempt to 
answer these questions and standardise terms within Queensgate, the 
NanoPositioning Book has evolved. It started as a need for a list of 
definitions and ended as this book, via a lot of head scratching, 
standards reading, free and frank discussion and downright imposition!  

This book is not intended to replace international standards. Rather it 
draws on them to define consistent terms for use in specifying 
Nanometre Precision Mechanisms. On the way it gives an insight into 
the technologies involved in Queensgate nanopositioning mechanisms. 
Chapter 1 gives a brief introduction to the field; Chapter 2 gets down to 
the nitty-gritty of measurement definitions (this one’s a bit dense on 
first reading: skip over it if you like); Chapter 3 gives some background 
to the servo control systems used in our products and Chapter 4 the 
materials. Chapters 5 and 6 deal with the core technologies of 
measuring and moving small distances and then Chapter 7 brings these 
together to describe some practical mechanisms and how their 
performance is measured and specified. The Glossary gives concise 
definitions of some of the terms used, in name order and symbol order, 
and I hope the index will help in finding specific topics. 

This book has been prepared using Microsoft Word for Windows 95 
Version 7.0a; Excel for Windows 95 Version 7.0a; the Math Works Inc. 
Matlab version 4.0 and Simulink. Historic pictures where found on the 
web at www.arttoday.com and are reproduced within the terms of their 
license agreement. 

Definitions have been taken where possible from International and 
National Standards, with International ones taking precedence when 
necessary. Relevant ones are: 

• ISO 5725-1,-2,-3,-4,-6:1994(E),  Accuracy (trueness and precision) of 
measurement methods and results. 

• PD 6461 Part 2 1980; Part 3 1995, Vocabulary of Metrology (BSI) 

• BS5233:1986, Terms used in metrology. 

It all started when we tried to define 
‘yaw’. Easy you may think, but we 
wanted to do it for a Z stage. Think 
about it, then read on! 
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• BS 6808 Part 1, 1987 Coordinate measuring machines. 

• ISO 31-0,-1,-3,-5,-11:1993, Quantities, units and symbols  
 

Many people have helped with this book: in particular I would like to 
thank Dr. Mike Downs of the UK National Physical Laboratory; Dr. 
Derek Chetwynd of the Centre for Nanotechnology and 
Microengineering, University of Warwick; the other directors and staff 
of Queensgate in the UK, USA and Japan, especially ( in alphabetical 
order) Hitoshi Ariu, Colin Chambers, Warren Gutheil, Graham Jones, Liz 
Kirk, Jayesh Patel, Phil Rhead, Jerry Russell, Sam Salloum, Sean Staines, 
for input and helpful comments. And also of course our customers, who 
have to live with the consequences!  

TRH April 1997. 
trh@queensgate.co.uk 

 

Please visit: 
www.nanopositiong.com 
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CHAPTER 1. INTRODUCTION 

What is it all about? 

This book describes and explains the technology used in Queensgate 
NanoPositioning products. It is designed to provide sufficient 
background information for an engineer to be able to understand how 
to interpret the technical data provided with Queensgate products, and 
to design systems which use Queensgate products in an optimal way. 
A great deal of this information has been developed  by Queensgate 
engineers during the past 25 years. Some of it comes from obscure 
library books, and some of it is not available anywhere else. A list of 
references at the end of each chapter will help those interested to learn 
more. A glossary is also provided to define carefully a number of much 
abused terms such as accuracy, precision, resolution.  Alternatively 
you can ask us.... NanoPosit ioning from the Experts.... 

In this section: 

Electro-Active Materials................................................................................2 

Capacitance Micrometry................................................................................3 

NanoMechanisms ............................................................................................3 

About this book ................................................................................................4 

References........................................................................................................4 

 

NanoPositioning, the technology of moving and measuring with sub-
nanometre precision, helps researchers and manufacturers in the 
production of some of the most advanced products in use today. For 
example, wafer steppers use this technology to make silicon chips with 
line widths down to 200 nm; Scanning Probe Microscopes are used to 
establish how well such chips are made; and the introduction of M-R 
head technology allows 5 Gigabyte disks to become the norm (1997), 
while 23 Gigabyte disk stacks are now available for desk top PCs. These 
machines, and the machines which make these machines, combine 
advanced optical design with advanced motion control technology 
which can position components to accuracies of a nanometre or below. 
Piezoelectric devices have the potential to meet the resolution 
requirements. However, because piezoelectric devices are non-linear 
and exhibit hysteresis, they require an external sensor to control their 
position. The capacitance micrometer is ideally suited to this task, being 
small, simple, and with sub-atomic intrinsic resolution capability. To 
make a NanoMechanism involves combining the piezoelectric actuator 

 

Units and Prefixes.  

The prefixes nano and micro are 
used throughout this book to indicate 
multiples or sub-multiples of a 
quantity. The full list with symbols is:  

10-24 yocto y 

10-21 zepto z 

10-18 atto a 

10-15 femto f 

10-12 pico p 

10-9 nano n 

10-6 micro µ 

10-3 milli m 

103 kilo k 

106 mega M 

109 giga G 

1012 tera T 

1015 peta P 

1018 exa E 

1021 zetta Z 

1024 yotta Y 

Thus a nanometre (nm) is 10-9m. To 
put things in perspective the diameter 
of the hydrogen atom is about 
100pm;an electron is about 6fm 
across; the average beard grows  
about 10nm in a second and an 
attoparsec is about a tenth of a foot. 
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and capacitance position sensor with flexure hinges and mechanical 
amplifiers in such a way as to produce a device capable of making pure 
orthogonal motions with sub nanometre precision.  

In this book we describe the basic theory, the capabilities, the 
limitations and the engineering background information  behind 
capacitance position sensing,  piezoelectric translators and  
NanoMechanisms.  

ELECTRO-ACTIVE MATERIALS.  
Moving tiny distances 

Certain materials exhibit properties that cause them to undergo 
dimensional changes in an electric field. These properties are commonly 
known as the piezoelectric and electrostrictive effects. Typically these 
effects are very small in natural materials. For example quartz exhibits a 
piezoelectric effect corresponding to a maximum strain (extension per 
unit length) of about 1 part per million.  These effects can be optimised 
by appropriate doping of ceramics and are tailored to a variety of 
applications, such as loudspeakers and ultra-sonic cleaners. The 
piezoelectric effect is reversible so that an applied stress will produce a 
voltage. This property is commonly used in gas igniters and 
microphones. The familiar acronym PZT comes from lead (Pb) zirconate 
(ZrO3) titanate (TiO3), a complex ceramic designed especially for 
applications requiring electro-mechanical conversion of some kind. 
Similarly the acronym for electrostrictive materials is PMN [lead (Pb) 
magnesium (Mg) niobate (NiO3)]. For a detailed discussion of these 
materials see a text such as that by Burfoot and Taylor, 1979. 

In NanoPositioning applications one great advantage of such materials 
is the combination of sub-atomic resolution ( picometre or below) with 
very high mechanical stiffness. This advantage outweighs their primary 
disadvantage  which is their extremely limited range. The maximum 
strain achievable is typically 0.1% for reliable operation, about 1000 
times greater than quartz. Thus a device with 100 µm range would have 
to be 100 mm long. To reduce the operating voltage to a low level, these 
devices are manufactured in stacks of very thin layers. For example a 
20 mm long stack might have 200 layers each 100 µm thick, and expand 
by 15 µm for 100 V. Typically these layers are produced using the  tape-
casting techniques developed for the manufacture of capacitors. Such a 
stack is typically very strong in compression and able to generate a 
force of about 750 N. This high stiffness results in very high resonant 
frequencies, enabling devices to move at high speed in a controlled 
manner. Because they can generate high forces it is also possible to 
amplify their motion mechanically  at the expense of lower frequency 
operation.  
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CAPACITANCE MICROMETRY  
Measuring tiny distances 

Capacitance micrometry is a very sensitive technique for detecting 
small displacements. It works by detecting the change in impedance of 
a parallel plate capacitor as the spacing or area changes. Displacements 
as small as 10-14 m, about the diameter of an electron, or 10 000 times 
smaller than an atom, have been measured using this technique. 

A capacitance micrometer is essentially quite simple to make. Two 
conducting electrodes, often metallic films or shims, are separated by 
about 500 µm, and have dielectric between them, usually air or a 
vacuum. With a 12 mm diameter pad a capacitance of about 2pF is 
achieved. This capacitance is compared to some kind of reference using 
an ac bridge. Any change in the micrometer capacitance, due to a 
change in its area or spacing, is demodulated and presented as a dc 
signal proportional in some way to the change in capacitance and 
related to the change in area, spacing or dielectric constant of the 
micrometer capacitor. 

Capacitance micrometers have the advantage of very high position 
resolution (far in excess of most laser interferometers), zero hysteresis, 
zero power dissipation at the point of measurement, high linearity 
(0.01% is possible), insensitivity to crosstalk, simplicity and the ability 
to be made from very stable materials, such as Invar or Zerodur. 
Queensgate's NanoSensors  are practical examples of capacitance 
micrometers. 

NANOMECHANISMS 
Motion and measurement 

By using NanoSensors to monitor the movement of mechanisms and 
translators it is possible to servo-control the position of these devices 
to sub-nanometre precision. A simple example of this is the Digital Piezo 
Translator. Here the motion of the PZT is monitored by the capacitance 
micrometer. Any hysteresis, drift or creep in the length of the PZT is 
monitored by the sensor. The output of the sensor is then used to 
control the voltage  on the PZT to form a closed loop system. In this 
manner the DPT achieves sub-nanometre reproducibility and deviation 
from perfect  linearity of 0.05%.  More complex mechanisms combine 
several axes of motion, along with mechanical amplification of the PZT 
motion. In order to minimise parasitic motions, i.e. motion which is not 
purely along a single dimension, and to ensure that these motions are 
orthogonal, flexure mechanisms are used. Optimisation of these designs 
is quite complex, requiring advanced design tools and extensive 



Chapter 1. Introduction 

4 

prototyping. These NanoMechanisms include NanoSensors on each 
axis to ensure sub-nanometre precision. 

ABOUT THIS BOOK 
Before going into the details of control systems, sensors, positioners 
and mechanisms it is helpful to define some of the terms used to 
describe ‘accuracy’. This is dealt with in Chapter 2. The concept of  
accuracy however gives rise to a rather complex series of definitions 
which may at first be a bit off-putting. Don’t worry too much about it: a 
full understanding is not required to understand the succeeding  
chapters! 

Chapters 3 to 6 discuss the techniques and components that make up 
NanoMechanisms and Chapter 7 brings these together to describe the 
properties of some practical systems. 

Chapter 8 is a glossary of terms which also acts as an index to more 
complete discussions. 

REFERENCES 
Burfoot J.C. and Taylor G.W.  Polar Dielectrics and their applications., 
The MacMillan Press Ltd., 1979. 
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CHAPTER 2. ACCURACY, TRUENESS AND PRECISION 
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The Coordinate System..................................................................................5 
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COSINE AND ABBE ERRORS...................................................................... 12 
MEASUREMENT RESOLUTION AND NOISE ........................................... 13 
MEASUREMENT REPEATABILITY AND REPRODUCIBILITY.............. 16 
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POSITION RESOLUTION AND NOISE ....................................................... 21 
POSITION REPRODUCIBILITY.................................................................. 22 
POSITION REPEATABILITY ..................................................................... 24 
SUMMARY OF CONTRIBUTIONS TO POSITION ACCURACY ................ 25 

Appendix..........................................................................................................27 

DERIVATION OF QUANTISATION NOISE ............................................... 27 
 

This section is designed to give enough technical background 
information to allow an engineer or scientist to understand the issues 
involved in designing and using nanopositioning systems. Here we 
define various terms required for a full understanding of 
NanoMechanisms, their specification and the supplied test data. 

THE COORDINATE SYSTEM  
Everything is relative to something 

First it is necessary to define the coordinates used to describe 
positions. The obvious system to use for positioning stages is an 
orthogonal Cartesian Coordinate system. With this one can define a 
position with its X, Y, Z coordinates and an arbitrary rotation as 
components of rotation about the X, Y and Z axes. More usefully one 
can describe a movement or displacement as a change in the X, Y and Z 
coordinates. 

Fig. 2.1 shows the system used. As drawn, the positive X direction is 
out of the page and the negative X direction down into it. Rotations are 
described with respect to the X, Y and Z axes in a right-handed sense, 
thus +θ is a clockwise rotation when looking along the +Y direction, +φ 

 

+Y

+Z

+X

φ

θ
γ

 

Accuracy, trueness and precision: 
these words are often used 
interchangeably but actually mean 
different things. To ensure uniformity, 
Queensgate uses definitions based on 
ISO5725-1:1994(E). 

Fig. 2.1 Coordinate System 
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is a clockwise rotation when looking along the +Z direction and +γ is a 
clockwise rotation when looking along the +X direction. 

Roll, pitch and yaw 
Which way is ‘up’? 

The terms pitch, roll and yaw are often used when talking about 
rotations. These terms are useful when describing parasitic rotations 
caused by a linear motion, but great care must be taken as they are 
referred to the direction of motion and a concept of ‘up’ rather than a 
defined axis system. For an aeroplane in flight, a rotation about an axis 
drawn from wing tip to wing tip is pitch; a rotation  about an axis drawn 
down the length of the fuselage is roll and a rotation about a vertical 
axis is yaw. In the defined Cartesian system if the 'plane is flying along 
the positive X direction θ is pitch, γ is roll and φ is yaw. Using an 
aeroplane as an example we have arbitrarily assumed that the XY plane 
is horizontal and Z is up. This could also be assumed for motion along 
Y, but what happens when you fly along Z? Which way is up then? For 
completeness we must have consistent definitions of the ‘horizontal’ 
planes for motion along all the axes. This produces some apparently 
weird results which highlights the problem of the terms roll, pitch and 
yaw. We do use the terms however, so to be sure, observe the 
associated symbols!  

 

POSITION MEASUREMENT  
Where you are and where you think you are 

 
When talking about position measurement, it is useful to consider a 
simple one-axis translation stage as shown in Fig. 2.2. The stage is 

δγ,θ,φ are used to denote roll, pitch 
and yaw. As these terms depend on 
the direction of motion, subscripts 
must be used to fully define them. 
Thus δθx is a θ rotation when moving 
along the +X axis, i.e. pitch. So we 
have: 

roll: δγx  δθy  δφz 
pitch: δθx  δφy  δγz 
yaw: δφx  δγy  δθz 

The sign of the roll, pitch or yaw is 
obtained by multiplying the sign of 
the motion direction by the sign of 
the resultant rotation. 

One sees a variety of symbols used to 
denote rotations about the X, Y and Z 
axes, for example α,β,γ; θ1,θ2,θ3. 
We use γ,θ,φ to maintain some 
consistency with the accepted altitude 
and azimuth symbols θ,φ used in 
spherical polar coordinate systems.  

Motion along ‘Horizontal’ 
plane 

‘Up’ Roll Pitch Yaw 

X XY +Z γ θ φ 

Y YZ +X θ φ γ 

Z ZX +Y φ γ θ 
Table 2.1 Roll, pitch and yaw axes 

Fig. 2.2 A simple X stage Fixed frame

Moving stage

Capacitance sensor

Computer
display

Sensor
electronics

X

Y
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designed to move in the X direction with respect to the fixed frame and 
a capacitance sensor measures this movement and displays it on a 
computer screen. We must now introduce the concept of an external, 
perfect measuring device that can tell us what the 'true' motion or 
position of the stage is. Let us suppose that the stage moves from a 
position O, which we will consider as the origin for measurements, to a 
true position xp shown in Fig. 2.3. At present we are not concerned with 
what causes the motion. 

O
xp xm

X

Y

2δxmR

δxmS

 
 

 

The sensor will measure the position as xm which will not be the same 
as xp. The difference between the measured position and the true 
position is the measurement trueness, quantified by a systematic error 
δxmS. Obviously one would like this to be small. The measured position 
xm is shown with an error bar as there will be noise and other random 
errors: every time you make a sample measurement it will be different. 
The size of the bar defines the measurement precision, quantified by a 
random error δxmR. If δxmS is finite and δxmR is small, one can get precisely 
the wrong answer! 

The general term accuracy is a combination of trueness and precision. 
The overall measurement accuracy is defined by the error 

 δ δ δx x xmA mR mS= +     (2.1). 

The rest of this section is devoted to defining the parameters that make 
up measurement trueness and precision. So what are they? In summary: 

 

Property Constituent parameters Dealt with in sub-section: 

Measurement trueness Mapping trueness Measurement Linearity and Mapping 

 Abbe error Cosine and Abbe Errors 

 Cosine  error Cosine and Abbe Errors 

Measurement precision Mapping error Measurement Linearity and Mapping 

 Resolution Measurement Resolution and Noise 

Fig. 2.3. X movement 

The terms random error etc. are used 
rather than just precision as one 
wants this quantity to be low: saying 
a system with low precision is good 
just does not sound right! We can 
now say that high precision implies a 
low random error and high accuracy 
means low random and systematic 
error etc. 

Throughout this book we use 
composite symbols made up from a 
main symbol, sometimes a prefix and 
nearly always one or more suffices. 
Main symbols for positions are x, y 
and z though x is used as a general 
default. Suffices m, p, c, d indicate 
measured, true, commanded and 
desired (position). t is not used for 
true as it causes confusion with time. 

Uncertainties and errors in a quantity 
are denoted by a δ (delta) prefix. It is 
rarely necessary to symbolise the 
terms accuracy, trueness and 
precision but when it is, it is done 
with extra suffices A, S (systematic) 
and R (random). Symbols are always 
printed in italics though not all 
suffices are: suffices that are 
descriptive rather than denoters of 
quantities in their own right are 
printed upright. This is all in 

Table 2.2 Accuracy and Precision 
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 Noise Measurement Resolution and Noise 

 Reproducibility Measurement Repeatability and Reproducibility 

 Repeatability Measurement Repeatability and Reproducibility 

As will be seen, some of the constituent parameters can be broken 
down further. The full picture is shown in Fig. 2.4: 

 

 

Measurement Linearity and Mapping 
We worry a lot about this 

In an ideal world the position displayed on the user’s computer would 
be the same as the true position, that is  

 x xm p=      (2.2). 

The world is almost ideal but not quite, so equation 2.2 must be 
replaced by some mapping function 

 ( )x f xm p=      (2.3). 

Various forms of measurement mapping function are described in more 
detail in Chapter 5, Capacitance Sensors, but the simplest is a power 
series 

Accuracy

Precision Trueness

Resolution Reproducibilty

Repeatability

Mapping trueness Abbe errorNoiseMapping error

HysteresisDrift

Temperature Humidity Time

EMC Electronic Vibration

 

Fig. 2.4.Measurment Accuracy 
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x a a x a x a x a xm x x p x p x p x p= + + + +0 1 2
2

3
3

4
4 ..........

       (2.4). 

Even simpler is a first order power series, or straight line which is 
equation 2.4 truncated after the term in xp: 

x a a xm x x p= +0 1      (2.5). 

Obviously this will not give as good a result as equation 2.4 but it is 
often adequate. The term ax1 is the linear factor describing the 
relationship between the true  stage position as measured by a 
hypothetical perfectly accurate position  sensor and the position 
measurement passed to the user's computer, that is the measurement 
scale factor. It  is the gradient of the best fit straight line (first order 
power series) to the general mapping function of equation 2.3 over the 
sensor range. 

Mapping Accuracy and Scale Factor Uncertainty 

Mapping accuracy is a measure of how well equation 2.4 fits the sensor 
performance (mapping trueness) and how well the 'a' coefficients are 
determined by the manufacturer (mapping precision). Ideally the 
coefficients will be traceable back to measurements made against 
international length standards. This is done using a laser interferometer 
as described in the Appendix to Chapter 7, Nanometre Precision 
Mechanisms. Briefly a set of 'true' displacements xp as defined by the 
interferometer are applied to the sensor and xm measured. A power 
series of chosen order is then fitted using linear regression and the 'a' 
coefficients with their uncertainties derived. 

The mapping accuracy is the set of errors on the individual 'a' 
coefficients, but normally only a first order power series is used so only 
a1 is considered. The mapping accuracy is then the sensor scale factor 
uncertainty, δax1, so 

 a ax x1 11= ± δ      (2.6). 

The scale factor trueness also depends on how well the capacitance 
sensor is aligned during assembly. For sensors supplied built into a 
stage this is not an issue for the user, but it will be if the sensors are 
used stand-alone. This is dealt with in detail in Chapter 5, Capacitance 
Sensors. The scale factor error is the largest contributor to the 
measurement trueness, δxmS. 

Mapping Error and Linearity 

Mapping error is defined with respect to a residual curve obtained by 
subtracting  the fit to the data set (equation 2.4) from the data set. Since 
the linear regression used to do the fitting minimises the sum of the 

The term 'linear regression' is often 
thought to mean 'fitting a straight 
line'. Whereas this is indeed the most 
common use for it, it actually refers 
to fitting  a function that is linear in 
the coefficients, not the independent 
variable. In this respect the 'a' 
coefficients of equation 2.4 can be 
found by linear regression. The 
popular spreadsheets Lotus 123 and 
Microsoft Excel will perform a 
regression with more than one 
column highlighted as the 'x' range. 
The procedure is thus 
straightforward: input a column of xp 
values, generate adjacent columns of 
xp

2, xp
3, xp

4 etc. and select all these as 
the 'x' range in the regression, input 
an associated column of xm values 
and select these as the 'y' range in the 
regression, push the button and out 
pops the 'a' values with errors. Not 
many people know that. 
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squares of the deviations from the line, there is usually a bigger residual 
on one side of the line than the other. We thus define the mapping error 
as half of the peak to peak deviation compared to the full range, 
expressed as a percentage.  

 

When the mapping function is first order (a straight line), then the 
mapping error becomes the linearity error or non-linearity, δxm.lin.  As 
an example, a linearity error of 0.1% in a 100 µm range device results in a 
100 nm absolute position uncertainty between the 0 µm position and 
the 100 µm position. This is illustrated in Fig. 2.5. Typically linearity 
errors of 0.1 % are easily achieved. Below 0.01 % the measurements are 
limited by the intrinsic linearity  of the calibration systems.  

Higher order mapping functions 

Usually the deviation from linearity is  roughly parabolic and in some 
systems this is easy to compensate for electronically. The result of 
compensating one, slightly imperfect, parabola with another is usually 
an ‘S’ curve of much lower amplitude so the mapping error is much 
lower. This is equivalent to using the ax1 and ax2 terms of equation 2.4,  

Non-linearity. 1st order fit.
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Fig. 2.5. Linearity error 

Mapping error. 2nd order fit.
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 Fig. 2.6. 2nd order fit 
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for an example see Fig. 2.6. Of course, if one were to use the higher 
order terms, an even better result could be achieved. This can be done 
easily in microprocessor based sensor systems or externally in the 
user's computer. It has been found that there is little to gain in going 
higher than fourth order, see Fig. 2.7. 

Local Scale Factor Variation 

Although a linearity error of 0.1 % of full scale is quite low, one can see 
that there are some steep local gradients in the residuals. These cause 
the local scale factor to differ significantly from the large amplitude 
scale factor which is usually quoted. That is, the scale factor varies 
according to the range over which it is measured, see Fig. 2.8. Typically 
if the linearity error is 0.1 % there could be a 1.5 % change in scale 
factor from one end of the range to the other, for example it could go 
from 0.995 to 1.01 over the range. The effect of this is that true motion 

corresponding to a measured 1 µm movement at one end of the range, 

Mapping error. 4th order fit.
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Non-linearity. Scale-factor Variation.
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Fig. 2.7. 4th order fit 

Fig. 2.8. Local scale factor variation 
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say from 0 to 1 µm, would not be the same as the true motion 
corresponding to a measured 1 µm at the other end, say from 99 to 
100 µm. The error would, of course, be within the quoted precision of 
the system but if the variation is known, it can be compensated.  

Cosine and Abbe Errors 
Measure the thing you want to measure  

These things come about by a misalignment of the motion and 
measurement axes. So far we have discussed the stage represented by 
Fig.2.2 with the sensor mounted on the X axis and motion considered 
along the X axis. A real world situation may be more like Fig. 2.9: 

dy.abbe

Y

φ
P

X'

X

 
Here the point P whose position is to be measured is offset from the X 
axis by a distance dy.abbe. The true position xp is also along an axis X' 
which is at an angle φ to the measurement axis X. This may happen if 
the stage mounting is misaligned. Now the measured position along the 
X axis xm will be less than the true position, there is a cosine error given 
by 

 
( )

δ
φ

φφx xm m.cos

cos
cos

=
−1

   (2.7). 

This is illustrated in Fig. 2.10. If φ  is constant, then this manifests itself 
as an error in the scale factor that, in the case of a closed-loop stage, 
would be calibrated out. If the sensors are used alone however, care 
must be taken to ensure that φ  is small. 

As shown in Fig. 2.11, things get worse when φ varies as the stage 
moves (due to, say,  yaw). Consider a motion along an arc from P to the 
true position xp. Now there is an additional error given approximately by 

 δ δφφx dm abbe y abbe. . .sin=    (2.8) 

where δφ is the total variation in φ as the stage moves. This is known as 
the Abbe error and dy.abbe as the Abbe offset. Obviously if dy.abbe is zero 
there is no Abbe error. The Abbe error cannot be calibrated out as it is 

Ernst Karl Abbe (1840-1905) was a 
German mathematician and physicist 
who in 1866  was invited by Carl 
Zeiss to become his director of 
research. After the death of Zeiss in 
1888, he set up the Carl Zeiss 
Foundation for research. 

Abbe is famous for, among other 
things, his alignment principle which 
says: "when measuring the 
displacement of a specified point, it is 
not sufficient to have the axis of the 
probe parallel to the direction of 
motion, the axis should also be 
aligned with (pass through) the 
point" 
Fig. 2.9. Misaligned measurement 
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φ
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Fig. 2.10 Cosine error 
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Fig. 2.11 Abbe error 
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not known where on the stage the user wishes the measured motion to 
be. It can however be compensated by the user if the variation in φ is 
known. This is discussed further in Positioning.  

Both the cosine and Abbe errors are limitations to measurement 
trueness. 

Measurement Resolution and Noise 
We also worry a lot about these 

Sensor noise manifests itself as a variation in the measured position 
about some mean value even when the stage being measured is not 
moving. Noise can be characterised by its frequency distribution (the 
noise spectrum), its amplitude distribution and the physical mechanism 
responsible for its generation.  

Amplitude and Frequency Distribution 

Noise is usually quoted as a rms  (root mean square) value as this can 
be measured readily with standard equipment.  Peak-to-peak noise 
levels are quoted by some vendors, but this information is not easily 
measured or interpreted, since  with any noise distribution at some time 
there will be a large deviation from the mean. The noise amplitude 
distribution is important when looking at resolution, i.e. within what 
distance from the mean is a given percentage of the deviation? Usually 
Gaussian noise dominates and in this case the rms is equivalent to the 
standard deviation, sigma: 68 % of samples taken will be within one 
sigma of the mean value. 

Position Resolution
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Consider the two  Gaussian profiles 
shown in Fig.2.12. The error function 
can be used to determine the 
probability of a single measurement 
being in a given region of space, and 
the probability of a subsequent 
measurement being in a neighboring 
region of space. There is a 68% 
chance of resolving two features 
which are a distance of two sigma of 
the noise apart. (Or  a 97% chance 
of resolving two features which are 
six sigma apart.) 

Fig.2.12 Resolving two positions 
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The noise power spectrum as illustrated in Fig. 2.13 is a useful piece of 
information, since it can show up the underlying sources of noise - e.g. 
mains pick up, which is localised at 50 or 60 Hz, or high frequency 
components at say 10 MHz, which would be due to electro-magnetic 
interference (EMI). 

In order to predict a measurement uncertainty within a system it is 
usually necessary to identify the different components of noise in the 
system and then add them together.  

Sensor Noise Sources 

There are many sources of sensor noise. Typically there will be 
internally and externally generated electrical noise and also externally 
generated mechanical noise. The following tables lists some of the more 
common noise sources and their properties. 

Source Properties Comments 

Internal Sources  
Amplifier noise Gaussian. Bandwidth 0 to 5kHz Usually the dominant source 
Processor clocks Distinct frequencies up to 50MHz. Microprocessor based systems only. 

Amplitude minimised by design 
Power-supply switching Distinct frequencies around 50kHz to 

100kHz 
Minimised by design 

External Sources  
Radio communications Distinct frequencies 10s to 100s of MHz Systems are well shielded against this. 

Care must be taken with sensor 
mounting when transmitters are 
close. 

Mains-borne spikes from 
motors etc. 

Essentially random frequencies up to 
several MHz 

Power line filtering is used to 
minimise this problem. 

Acoustic noise from air-
handling systems, rock 
concerts etc. 

10s to 1000s of Hz Must be minimised by careful sensor 
mounting.  

Ground vibrations due to traffic 
etc. 

10s to 100s of Hz Must be minimised by careful sensor 
mounting.  

Combining noise source 

The overall effect of noise sources will depend on the nature of the 
noise and the measurement bandwidth (the subject of bandwidth is 
discussed in more detail in Chapter 3,  Servo Control). The spectrum 
example of Fig. 2.13 shows a system with 500 Hz bandwidth, but for 
illustration the spectrum from 1 Hz to 100 MHz is shown. Most of the 
noise in the band is 'white' Gaussian noise characterised by a nominally 
flat spectrum from 1 to 500 Hz. The example level is 15 pm·Hz-1/2. The 
contribution to the overall measurement noise from this Gaussian 
component, δxm.ng, depends on the square root of the bandwidth 

 δ δx x Bm ng m ndens m. . .=      (2.9) 

Table 2.3 Noise Sources 
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where δxm.ndens is the Gaussian noise density (in this case 15pm.Hz-1/2 ) 
and Bm is the bandwidth (500 Hz). 

The spectrum example shows peaks at around 50 kHz which could be 
due to interference from switched mode powers supplies and further 
peaks at 10 MHz and 50 MHz which could be due to processor clocks 
or external interference. Most stages cannot physically move this fast 
so these components can be ignored when assessing the noise 
equivalent displacement of the stage. In practice of course one would 
never look at the sensor output with such a wide bandwidth. 

There is also a peak shown at 50 Hz. This could be due to pickup from 
the mains supply on the sensor circuitry or it could be a real stage 
motion. It cannot be ignored and must be added in. An rms addition is 
used 

 δ δ δx x xm m m.nsens .ng .n50= +2 2    (2.10) 

where δxm.n50 is the rms value of the 50 Hz component. It should be 
noted that the value of δxm.ng depends on the bandwidth selected but 
δxm.n50 will be the same for all bandwidths above about 50 Hz. 

Resolution 

The position resolution of a purely analogue sensor  or system is 
usually defined by the noise level. However if the position information 
is transferred digitally, which is usually the case, then the number of 
bits used to transfer the information must also be considered. In high 
precision systems, Queensgate uses single precision floating point 
number format to transfer information. This has a range of seven 

Example Noise Spectrum
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Fig.2.13. Noise spectrum 
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decimal digits giving a resolution of  0.1x10-6  or 10 pm in a system with 
100 µm range, which is far less than the analogue noise for systems 
with bandwidths above a hertz or so. Less precise systems use 16 bit 
integers to code information giving a digital resolution of  1 part in 
65 536 or 1.5 nm in a 100 µm range system. This can be significant, 
especially when the signal being digitised has intrinsically low noise. 

If N is the number of bits used to transfer information,  then we have an 
effective extra noise source (quantisation noise). The rms value of this 
noise source is  

 δx
d

m
xm

N.nquant
.max.

=
0 29

2
   

 (2.11) 

where dxm.max is the full measurement range. The derivation of this is 
given in the Appendix to this chapter. The total noise can be derived 
from the sensor noise given by equation 2.10 and the quantisation 
noise given by 2.11 

 δ δ δx x xm n m m. .nsens .nquant= +2 2    (2.12). 

 

Measurement Repeatability and Reproducibility 
Measurement repeatability is defined as the closeness of the measured 
displacements when the same true half range displacement is applied to 
the sensor repeatedly, under the same operating conditions and in the 
same direction. Repeatability does not include hysteresis or drift. 

Measurement reproducibility is defined as the closeness of the 
measured displacements when the same true half range displacement is 
applied to the sensor repeatedly, approaching from both directions. 
Reproducibility includes hysteresis, dead band, drift and repeatability. 

These definitions are derived from ISO 5725. 

Sensor Hysteresis 

Intrinsically a capacitance sensor has zero repeatability, zero hysteresis 
and zero dead band error: there is a direct relationship between the 
capacitor gap and the electrical capacitance. The only contribution to 
reproducibility error will be drift. In the real world however, the sensor 
can rarely be mounted at the same place as the 'true' displacement to be 
measured is applied, see Fig.2.9. This can lead to hysteresis errors, but 
as they are concerned mainly with positioning rather than measurement 
they are dealt with under Position Repeatability and Position 
Reproducibility. 

It should be noted that though 
capacitance sensors are intrinsically 
hysteresis free, this may not be true 
of other sensors. For example 
resistive strain-gauges can exhibit 
high intrinsic internal hysteresis as 
well as drift. 
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Sensor Drift 

If the plates of a capacitance sensor are held at a fixed distance apart, 
the measured position may vary with time: ax0 in equation 2.4 may 
change. This drift is usually associated with environmental changes, 
such as temperature or humidity which can affect the signal 
conditioning electronics or the capacitors directly. The errors 
contribute to the precision of the measurement, δxmR. Careful design of 
the capacitors and the electronics minimises the environmental effects, 
but as they can be predicted by mo nitoring the environment, 
temperature and humidity coefficients are quoted as separate 
contributions to precision so their effects can be minimised if required. 
See Chapter 5, Capacitance sensors, Environmental effects for further 
discussion of this. 

POSITIONING 
Where you are, where you think you are and where you want to be 

When considering positioning accuracy it is useful to talk around a 
closed loop positioning stage where motion is produced with piezo 
translators and sensed with capacitance micrometers. To make life more 
complicated, we will consider a two dimensional XY stage shown 
diagramatically in Fig. 2.14. Here the stage is moved in the X and Y 
direction with piezo translators (not shown, but acting along the X and 
Y axes) and movement measured with capacitance sensors mounted on 
the X and Y axes as shown.  

Usually the desired motion will be determined by the user in 
conjunction with a computer that sends XY position commands to the 
controller. The motion measured by the sensors in the two axes is 
monitored by the computer and also fed back to the controller which 
moves the stage to minimise the difference between the sensed motion 
and the command. Fig. 2.15 shows a simple control loop and Fig. 2.16 
various positions. 

 

 

Fig. 2.16 is an extension of Fig. 2.3 with some additions. 
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Fig. 2.14. A simple XY stage 
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Fig. 2.15. Simple control loop  
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Consider a movement starting from an origin 'O'. Point A in Fig. 2.16 
represents a desired position and Box A the position actually 
commanded. Ideally Box A would be a point the same as Point A, but as 

Box B. Where you think you are

Box C. Where you actually are.

O X

Y
Point A. Desired position

Point C

δypS

δxpS

δxpR

δypR

yd,yc,ym

yp

xp xd,xc,xm

δympR

δxmpR

δxcR

δycR

Box A. Commanded position

 
Fig.2.16 Positions 

This is a repeat of the information 
box  first shown on page 7. 

Throughout this book we use 
composite symbols made up from a 
main symbol, sometimes a prefix and 
nearly always one or more suffices. 
Main symbols for positions are x, y 
and z though x is used as a general 
default. Suffices m, p, c, d indicate 
measured, true, commanded and 
desired (position). 

Uncertainties and errors in a quantity 
are denoted by a δ (delta) prefix. It is 
rarely necessary to symbolise the 
terms accuracy, trueness and 
precision but when it is, it is done 
with extra suffices A, S (systematic) 
and R (random). Symbols are always 
printed in italics though not all 
suffices are: suffices that are 
descriptive rather than denoters of 
quantities in their own right are 
printed upright. This is all in 
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will be shown later this may not be the case as positions can only be 
coded with a certain precision, δxcR , δycR  

The larger box around position A, Box B, represents where you think 
the stage has moved to, using the stages built -in sensors. The size of 
the box represents the sensor measured position precision which has 
components δxmpR and δxmpR. This is  not quite the same as the 
measurement precision defined in Fig.2.3, as now there may be real 
random motions of the stage which may make the box bigger. In a 
closed-loop system the box is centred on the commanded position: if it 
were not the servo would see the displacement and correct it. 

If now the stage is observed using an external perfect noiseless 
position measuring device, the true position observed would be 
somewhat different again. This is represented by the third box, C. Again 
this is a box because the external device will see any random motions 
produced by the positioning system. Also if the same position is 
commanded several times, the resultant position may not be the same in 
every case. The distance between the desired position and the true 
position represents the position trueness which has components δxpS 
and δypS. The size of Box C represents the position precision with 
components δxpR,δypR. The position trueness and position precision 
make up the position accuracy: 

 δ δ δx x xpA pS pR= +     (2.13) 

 δ δ δy y ypA pS pR= +     (2.14). 

When describing the system performance we must  consider the ability 
of the system to move to a required position and also the ability of the 
system to tell the user where it has moved to. As can be seen, these 
may not be the same. In the same way as measurement trueness and 
precision are made up of other parameters, so it is with position 
trueness and precision: 

Property Constituent parameters Dealt with in sub-section: 

Position trueness Mapping trueness Position Linearity and Mapping 

 Abbe error Cosine and Abbe Errors 

 Cosine  error Cosine and Abbe Errors 

Position precision Mapping error Position Linearity and Mapping 

 Resolution Position Resolution and Noise 

 Noise Position Resolution and Noise 

 Reproducibility Position Reproducibility 

 Repeatability Position Repeatability 

 
Table 2.4 Position trueness and precision 
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All the parameters that affect measurement also affect positioning. That 
is not surprising as in a closed loop system it is the performance of the 
measuring system that dominates the positioning accuracy: if the 
measuring system can say where the stage is with certainty then the 
servo controller can make this position equal to the required position 
(within limits - see Chapter 3 Servo Control). 

The constituent parameters can be broken down further in exactly the 
same way as with measurement, Fig.2.4 still applies. 

Position Linearity and Mapping 
In a simple control loop, the measured position is compared with the 
command position and the stage moved to null the difference, that is 
the measured position will be made equal to the command. If, then, the 
measured position is a linear function of the true position, the true 
position will be a linear function of the command. This is discussed in 
detail in Chapter 3, Servo Control. As has been discussed in 
Measurement linearity and mapping, the measured position may not, 
however, be a linear function of the true position but may best be 
described by a higher order power series. In this case the true position 
will not be a linear function of the command but will be described by 
another power series, the positioning mapping function. 

The input to the positioning mapping function is the desired position, 
Point A, and the output is the true position, Box C. Although they are 
related, it should be noted that in a closed loop positioning stage the 
positioning mapping parameters are not identical to the measurement 
mapping parameters. Equation 2.4, copied here, relates the measured 
displacement xm to the true displacement xp 

 x a a x a x a x a xm p p p p= + + + +0 1 2
2

3
3

4
4 .......... 

       (2.15). 

In the closed loop system xm is made equal to the input command, xc, so 
the equation must be reversed to get the true position xp. Now we have 

 x b b x b x b x b xp c c c c= + + + +0 1 2
2

3
3

4
4 ..........  

       (2.16). 

Similar equations exist for y.  

For the linear approximation we can define the positioning scale factor, 
b1: 

 b
a1

1

1
=      (2.17). 
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This is simple enough for a linear fit to the actual transfer function but 
reversing a fourth order mapping function can be more complex! This is 
done in Chapter 3, Servo Control, but in general the user does not have 
to worry about it: for stand alone sensors the position to measurement 
mapping function is supplied and for positioning stages the command 
to position function is supplied: it all gets calibrated out. 

Position Resolution and Noise 
Position noise manifests itself as a variation in the true stage position 
about some mean value even when the commanded motion is zero. It is 
a contribution to the size of  Box C. 

Contribution from Sensor.  

Just as the measurement trueness determines the positioning trueness, 
so sensor noise and resolution affects positioning noise and resolution. 
With a stationary command, the sensor noise will generate an error 
signal that will be interpreted by the control loop as a command. It will 
move the stage to null the error signal thus making the noise signal an 
actual displacement. In a purely analogue system there will be a 
contribution to position noise of δxp.nsens given by equation 2.10. In a 
digital system the contribution will be given by equation 2.12. 

Command Resolution. 

Starting at the beginning, the system must be able to command the 
desired motion: ideally box A should be zero size. Usually the 
requirement for a movement is determined by the user and a computer 
and the position information will be transferred to the controller as a 
binary number. The number of bits used to represent the position 
determines how well this can be done. As with sensors, in high 
precision systems, Queensgate uses single precision floating point 
number format to transfer information. This has a range of seven 
decimal digits giving a resolution of  0.1x10-6 or 10 pm in a system with 
100 µm range. This is unlikely to be a limitation but if fewer bits are used 
an error could be introduced. For example if the full range of a stage and 
controller system is 100 µm and the command information is coded as a 
16 bit number, the smallest step that can be recognised is  

 step = =
100

2
1516

µm
nm.    (2.19). 

If a motion of 3 nm is required then the system can code this exactly 
and there is no error at this point. If 4 nm is required the nearest 
command is 4.5 nm and there will be a 0.5 nm error. In general there is an 
uncertainty of plus or minus half the least significant bit value or a 
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noise equivalent displacement as given by equation 2.11. For the 
command, this is designated δxc.nquant. 

Piezo Drive Noise. 

Once the position of the stage has been measured and compared with 
the command position, the resultant difference signal is used to 
generate a drive voltage to be applied to the piezo actuators. Noise will 
be introduced by this process so even if the measurement system were 
perfectly noiseless, the stage would still have a noise motion due to 
this.  

The effect of noise introduced at this point in the loop is somewhat 
different to that introduced by the measurement micrometer in that it is 
at least partially servoed out. The ability of the system to servo out the 
drive noise depends on the bandwidth set: the higher the bandwidth 
the better the contribution is servoed out. The piezo drive noise 
actually decreases with increasing bandwidth! Compared with the 
sensor noise however, the piezo drive noise contribution is small, so its 
reducing contribution at high bandwidth is swamped by the increase in 
sensor noise.  

This drive contribution is designated δxp.ndrive and in practice represents 
the 'noise floor' of the system: even at zero system bandwidth there will 
be stage motion at this level. 

Mechanical and Acoustic Noise 

External mechanical inputs such as ground vibration and acoustic noise 
will cause the stage to move. The effects of these inputs can be 
minimised by designing the stage so that it is stiff, which will maximise 
immunity to vibration, and by careful stage mounting.  

Vibration that does make its way into the stage will be servoed out if 
the vibration is within the system bandwidth. Mechanical noise can be 
quite high in some environments and in this case  having a high system 
bandwidth reduces the effect of the noise input. 

Position Reproducibility 
Position reproducibility is defined as the closeness of the generated 
displacements when the same true half range displacement is 
commanded repeatedly, approaching from both directions. 
Reproducibility includes hysteresis, dead band, drift and repeatability. 

Hysteresis 

Fig. 2.17 Dead-band 
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Hysteresis manifests itself as a difference in true position when the 
required position is approached from different directions. The simplest 
form of hysteresis is known as backlash. This is usually found in 
devices operated by a lead screw - when the direction of motion is 
changed there is a small dead band when the screw turns, but no 
motion is produced - see Fig.2.17. Piezo-electric devices (and flex 
hinges) do not have a dead band but exhibit a more complex form of 
hysteresis where the position depends to some extent on previous 
positions. This is discussed in Chapter 6 Piezos, but Fig. 2.18 shows a 
typical  'hysteresis loop '. 
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In a closed-loop system where the position of the stage is monitored 
with a capacitance micrometer, hysteresis is taken out and the stage 
performance depends only on the sensor. That is in an ideal world. In 
practice the sensor can never be in exactly the same place on the stage 
as the position to be controlled: the Abbe offset can have an effect (see 
page 12). In all Queensgate stages the sensors are mounted on the 
motion axes. Motions along that axis are thus well controlled, but if the 
point of interest is offset from the axis, then rotation in the φ direction 
can affect the position. The φ rotation is uncontrolled and is governed 
by asymmetries in the moving stage mounting hinges and off-axis 
forces from the piezo actuator so the Abbe error could have a 
hysteresis  component. This is minimised by design but is measured and 
quoted by Queensgate. 

The most telling measure of hysteresis is to scan the stage backwards 
and forwards several times, fit a linearisation polynomial to the data 
(generally this will be a straight line) and plot the residuals. Any 
hysteretic tendency is then clearly visible and is quoted as a fraction of 
the full scan range. Fig.2.19 illustrates the procedure for an open-loop 
piezo showing large hysteresis. Some manufacturers quote a random bi-
directional repeatability which measures the variation as an rms  
deviation when the system is offset  by varying amounts of random 
direction and amplitude. This can however produce a figure which 
flatters, masking a large hysteresis loop.  

Position Repeatability 
Repeatability is defined as the closeness of the generated 
displacements when the same true half range displacement is 
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Fig.2.19 Hysteresis Measurement 

Fig.2.18 Hysteresis Loop 
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commanded repeatedly, under the same operating conditions and in the 
same direction. Repeatability does not include hysteresis or drift. This 
is often used by manufacturers of lead screw type devices, to separate 
the accuracy of the motion from the backlash. It is often called uni-
directional repeatability.  

Summary of contributions to position accuracy 
Some of the terms that make up positioning precision and trueness are 
illustrated graphically in Fig. 2.20. 

This  figure shows various positions for a closed-loop system plotted 
against the desired position, which is assumed to be scanning over the 
full range in both directions. In an ideal system all the lines would be on 
top of one another but various errors spread them out. The errors have 
been grossly magnified for clarity (especially hysteresis and non-
linearity which would be very close to zero in a closed-loop stage) and 
they all should show quantisation steps, apart from the desired 
position, but the drawing is too complicated as it is! 

As can be seen from this plot, the position precision bar may not be 
centred on the true position as non-linearity and hysteresis may push 
the true position off centre. 

 

 



Chapter 2. Accuracy, Trueness and Precision 

26 

 

 

 

 

 

 

 

 

 

 

 

 

Desired Position  (µm)

V
ar

io
us

 P
os

iti
on

s 
 (

m
)

Position  noise 2 x δx p .n

Non-linearity δ x p .lin

Hysteresis δ x p .hyst

Position precision 2 x δ x p R

Position trueness δ x
pS

Measured position precision δ x
mpR

TRUE POSITION x p

DESIRED POSITION (SOLID LINE) x d

COMMANDED AND MEASURED POSITION (STEPPED LINE) x c , x m

Scale factor error δ b x1

Straight line fit to true position

Average of up and down true position loops

 

Fig. 2.20 contributions to precision and accuracy 
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APPENDIX.  

Derivation of Quantisation Noise 
 

The finite number of bits used to encode a signal gives an uncertainty 
in the value of that signal. This can be treated as an extra noise source. 

Consider a signal that does not vary in an arbitrary time interval T. If the 
N bit representation of the true value of the signal is n, the true value of 
that signal may fall between two values n-LSB/2 and n+LSB/2 where 
LSB represents the value of the least significant bit of the number. We 
cannot know where in between these two values the true value lies: any 
value is equally probable. 

Given that any value between the limits is equally possible, the value 
can be described by a straight line from -LSB/2 to +LSB/2 as illustrated 
in Fig. 2.21, this gives all values equal weighting in the simplest way. 

This line can be represented by 

 y
t
T

= −
1
2

      (2.20) 

where the value of  LSB is assumed to be unity. We can now find the 
rms value of this  function from 0 to T to define an equivalent noise 
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This is the rms noise equivalent to the least significant bit, so we can 
define an actual quantisation noise as 

 δx
d

m
xm

N.nquant
.max.

=
0 29

2
   

 (2.24) 

where dxm.max is the maximum measurement range.  

T
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Fig. 2.21. Possible values 
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CHAPTER 3.  SERVO CONTROL 

Many text books have been written on control theory. It is not the 
purpose of this section to write another one, rather to describe in 
qualitative terms the systems used by Queensgate and show how 
various control loop parameters affect performance.  

In this chapter: 

Static Performance.......................................................................................28 

OPEN-LOOP CONTROL.............................................................................. 28 
CLOSED-LOOP CONTROL ......................................................................... 30 
STATIC MAPPING ..................................................................................... 33 

Dynamic Performance..................................................................................35 

OPEN LOOP RESPONSE ............................................................................. 35 
CLOSED LOOP MODELS............................................................................ 36 
RESPONSE CURVES AND SETTLING TIME ............................................. 38 
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Appendix..........................................................................................................43 

REVERSING POWER SERIES....................................................................... 43 
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STATIC PERFORMANCE 

Open-loop control 
It is the aim of any position control system to make the output position 
reflect an input command. This is illustrated by the simple 'open-loop' 
controller of Fig.3.1.  

 

 

Here position is related to the command by the ‘transfer function’ G(s) 
where s is the complex frequency. 

The command will be in the form of a voltage in an analogue system or 
a binary number for a digital system. For example in an analogue system 
an input of zero volts will set the output to the nominal zero µm 

 

A steam governor. An example of  
mechanical feedback control 

Fig. 3.1 Open loop control 

Classical servo control theory is 
dominated by the use of transfer 
functions in terms of the complex 
frequency ‘s’ and their manipulation 
using Laplace transforms. It is not 
necessary to have a knowledge of 
these techniques for an 
understanding of this chapter, one 
can replace s with jω to get an idea 
of the shape in the frequency domain 
of the functions used. Here ω is the 
angular frequency, 2πf, and j the 
square root of minus one, 

G(s)
Command Position
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position, an input command of 10 V may move the stage 50 µm to the 
50 µm position, an input command of -5 V may move it to the -25 µm 
position and so on. Such a system would have a scale factor of 
5 µm·V-1. In a corresponding 16 bit digital system  +32 767 would give 
+50 µm, -32 768 would give -50 µm. Obviously the actual scale factor 
will depend on the range of the system being considered. Queensgate 
makes stages with full ranges of 10 µm to more than 100 µm, so to keep 
things general we will consider the input command to be in µm. What 
this corresponds to in volts or numbers depends on the actual stage 
and controller. 

With the command and position both in µm, the transfer function G in 
Fig. 3.1 should be unity. It is shown as a function of  's' as it will depend 
on the frequency of the input command: more of this later. In practice G 
will be a non-linear function of the input command and will be 
hysteretic if piezos are providing the motion. It may also vary with 
temperature and time and have an offset added to it that may also vary 
with temperature and time. All in all the position will be only loosely 
related to the input command! Let us expand Fig. 3.1 to include some of 
the errors: 

 

 

b01, b02, b03 are offsets added in at various points in the controller, xc is 
the command and xp the true position (see equation 2.16). The gain term 
G is now a function of the input command illustrating non-linearity and 
also a function of temperature T and time t. The frequency dependence, 
s, has been ignored for now. P represents the piezo actuator which is 
non-linear (and hysteretic) in the intermediate variable x1 and is also a 
function of temperature and time. In this example the time dependence 
is included to show the effects of drift, it does not relate to time 
variation of xc: the command is considered to be static for the moment. 
The offsets b01, b02 are electronic but b03 could be mechanical, caused 
for example by thermal expansion of the piezo actuator or the metalwork 
between it and the output measurement point. We thus have 

 ( )[ ]x b P b G x bp c= + + +03 02 01   (3.1). 

The x,  T and t dependencies of the various parameters have been 
omitted from this equation for clarity. Given that G and P are known, 
one can assess the effect of the various offsets. The input offset b01 is 
indistinguishable from the command xc and is multiplied by G and P in 

It should be noted that Queensgate's 
NPS range of digital controllers has 
a floating point digital command 
option: then the input command 
really is in µm. 

xc

b01( T,t) b02(T,t) b03(T,t)

xp
G(xc,T,t) P(x1,T,t)

x1

 

Fig. 3.2. Open-loop with offsets 
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the same way as the command; the intermediate offset b02 is only 
multiplied by P and the output offset b03 appears directly on the 
position. Without putting numbers in, it is obvious that all these 
temperature dependencies and non-linearities are undesirable. 

Closed-loop Control 

A Simple System 

A lot of these nasty features can be eliminated with closed-loop 
control. The principle of closed-loop control is to measure the true 
output and compare it with the required output. If the two are not the 
same, then change the output until they are! The classic way of doing 
this is shown in Fig. 3.3. 

 

 

 
 

H(s) represents the transfer function of the sensor system. By 
examination of  Fig. 3.3 

 ( )x G x H xp c p= − .     (3.2) 

from which 

 x
G x

G Hp
c=

+
.

.1
     (3.3). 

Again the s dependence has been ignored for now. If G is made very 
large, then equation 3.3 reduces to 

 x
x
Hp

c=      (3.4). 

xc
G(s)

H(s)

+

-

+ +

++

xm

xp

 Fig. 3.3 A Simple Closed Loop 
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This is now completely independent of G so all its temperature, time 
(drift) and non-linear effects go away. Of course H will be unity as the 
measurement should equal the true position, in which case 

 

 x xp c=      (3.5) 

which is exactly what is required. Imperfections in H will come through 
as errors but if the sensor is a capacitance micrometer, H will be non-
hysteretic, linear and relatively drift free: see Chapter 5, Capacitance 
Sensors. 

A System with Errors 

The beneficial effects of closed-loop control can be seen explicitly by 
closing the loop on Fig. 3.2, the system with errors.   

 

 
 

H is shown as a function of temperature and time but it must be 
remembered that this is a very weak function for capacitance sensors. 
Now we have 

 ( )[ ]x b P b G x b Hxp c p= + + + −03 02 01   (3.6) 

giving 

 
( )

x
b
HPG

Pb
HPG

PG x b
HPGp
c=

+
+

+
+

+
+

03 02 01

1 1 1
 (3.7). 

As will be shown, G can be made effectively infinite which means that 
the effect of b03, b02 and P disappear completely. If H is unity, we are left 
with 

xc

b01( T,t) b02(T,t) b03(T,t)

xp
G(xc,T,t) P(x1,T,t)

x1

H(T,t)

-

+ +
+ +

+

 

Fig. 3.4 Closed loop with Errors 
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 x x bp c= + 01      (3.8). 

It is thus impossible to remove the effect of the input offset, which is 
not surprising as it is indistinguishable from the command. 

In summary, these exercises show that the static performance of the 
servo control loop is determined by the measurement system and not 
the piezos etc. In an open-loop system all the drift, non-linearity and 
hysteresis of the piezos are present on the output. In a closed-loop 
system they are not. 

The Integrator 

The closed-loop system relies for good offset elimination and high 
linearity on having a very high value for G. This can be achieved by 
making G an integral term, that is the output is the time integral of the 
input. This is illustrated in Fig. 3.5. The input to the integrator is shown 
as a ‘top hat’ rising from zero to 1 V at time 4 s and returning to zero at 
14 s. The integral of this is a ramp rising to a maximum value ( in this 
case 10 V) and staying there when the input returns to zero. 

If the input were to remain at its non zero value, ignoring obvious 
limitations like voltage headroom or computer number overflow, the 
output would ramp to infinity after an infinite time. The gain is thus 
infinite at dc (note that a steady input can only be said to be dc after an 
infinite time). Alternatively one can see that the output can be finite 
even with zero input, i.e. infinite gain. 

The transfer function of an integrator is  

 G
sint =

1
τ

     (3.9) 
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where τ is a time constant governing the time it takes for the output to 
get to a certain value. For a step input it is the time taken for the output 
to equal the input (1 s in the example). Replacing s with jω shows that 
the gain goes to infinity at zero frequency (dc).  

By using an integrator most steady state errors and non-linearities are 
thus eliminated. In practice an analogue integrator will not have infinite 
dc gain as it will be built around an operational amplifier having finite, 
though large, dc gain so a rising ramp would stop at this value times the 
input (again ignoring headroom limitations). Also an analogue 
integrator cannot hold an output indefinitely when the input is zero, 
due to leakage. A digital system can have infinite dc gain as a digital 
algorithm can ramp up for ever (ignoring numerical overflow) and can 
hold an output value indefinitely. 

Static Mapping 
The static performance of  a closed-loop system depends on the 
performance of the position sensor. The mapping function for true 
position to measured position was defined by equation 2.4 

 x a a x a x a x a xm p p p p= + + + +0 1 2
2

3
3

4
4 ..........  

       (3.10). 

The measured position will be made equal to the commanded position 
by the servo so equation 3.10 can be written 

 x a a x a x a x a xc p p p p= + + + +0 1 2
2

3
3

4
4 .......... 

       (3.11). 

This needs to be reversed to get xp as a function of xc, giving 

 x b b x b x b x b xp c c c c= + + + +0 1 2
2

3
3

4
4 .......... 

       (3.12) 

which was introduced as equation 2.16.  

If one set of coefficients are known, the reverse set can be found using 
the formulae in the appendix to this chapter. It should be noted that 
Queensgate closed-loop position stages are calibrated directly in terms 
of  true position as a function of command, i.e.  the 'b' coefficients are 
measured directly,  though generally only b1 is of interest due to the 
high linearity of the capacitance sensors. Equation 3.12 then gives the 
mapping from command to position. Alternatively the 'a' coefficients 
can be derived and the command required to get a certain position 
determined using equation 3.11. 
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Internal Mapping Correction 

For convenience we can write the mapping functions equations 3.11 
and 3.12 as matrix operator equations 

 xc = AX p       (3.13) 

 x p = BX c      (3.14) 

where A is a row vector of  'a' coefficients, Xp is a column of powers of 

xp and similarly for B and Xc.  A and B are the reverse of each other, 
which can be written 

 A B=       (3.15) 

 B A=       (3.16). 

Given that B is determined by calibration, it can be applied to the 
sensor reading before comparison with the command to linearise the 
motion with respect to command. This is done in Queensgate's range of 
digital controllers: the principle is illustrated in Fig. 3.6. 

 

 

It may at first sight seem that it should be the A mapping operator that 
is applied: it is not. The argument goes something like this: 

1. Consider the stage moving linearly with respect to the command; 

2. the sensor output can be predicted by applying A to the stage 
motion, the output may be non-linear; 

3. if A transforms a linear motion to something non-linear, then A  will 
transform the non-linear sensor output back to something linear;  

4. the linearised sensor output is made equal to the command so the 
command is now linear with respect to the motion; 

5. if the command is linear with respect to the motion, then the motion 
is linear with respect to the command as originally postulated; 

xc
G(s)=1/sτ

H(s)

+

-

+ +

++

xm

xp

B

=0

 Fig. 3.6 Mapping Correction 
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6. A B=  so B must be used to provide the correction. QED. 

External Mapping Correction 

An alternative approach for systems that do not have built -in mapping 
correction is to apply A to the command in the user's computer before 

issuing it to the controller and apply B to the read-back before 
displaying it. 

DYNAMIC PERFORMANCE  
So far we have considered the performance of open and closed-loop 
controllers with non-varying command inputs. In practice it is 
necessary to know how fast the stage will move and how well it will 
follow a varying command. Three properties govern the ability to follow 
varying commands: 

1. the stiffness and mass of the stage 

2. the frequency response of the controller 

3. the current output capability of the piezo drive amplifier. 

Open Loop Response 
The open loop response of a stage is generally dominated by the stage 
resonant frequency, which depends on the mass of the moving part and 
the stiffness of the support and piezo. This is a simple 'mass on a 
spring' as illustrated schematically in Fig. 3.7. The piezo stiffness is 
represented by a coil spring and mechanical damping by the dash-pot.     
This has a transfer function 

 

 G s
s

Q
s

n n

( ) =
+ +

1
1 1
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ω ω

   (3.17) 
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Fig. 3.7. Mass on a spring 



Chapter 4. Material Properties 

36 

where ωn is the resonant frequency in rad.s -1 (ωn=2πfn where fn is the 
resonant frequency in hertz) and Q is the amplification factor. The 
resonant frequency depends on the stiffness, k , of the stage and the 
mass, m, of the moving part and load 

 f
k
mn =

1
2π

     (3.18). 

The Q of the system is the ratio of the response at resonance to the 
response at dc. It also governs the decay time of the ringing caused by 
a step input. Q depends on the losses in the system or 'damping': the 
higher the damping the lower the Q value. 

Fig.3.8 shows this simple resonant open-loop transfer function with 
plots of its frequency and phase response, and time response to a 1 µm 
command step input. The example shown has a resonant frequency of 
1 kHz and Q of 20. The plot shows the frequency response in decibels  
(dB): a factor of 20 is 26 dB. 

 

 

 

 

 

Closed Loop Models 
In the previous discussion on static response we showed that an 
integrator in the forward loop (part of G) reduced the static error to zero. 
We also assumed that the feedback gain, H, was unity. What happens 
when we close the loop including the resonant response of Fig. 3.8?   

The bel is a unit named after 
Alexander Graham Bell (1847-
1922), the inventor of the 
telephone. It is used to measure 
ratios of intensities or powers and 
is defined as log10(P1/P2) and is 
famous because it is never used. 
Instead we have the decibel which 
is one tenth of a bel and is thus: 
dB=10log10(P1/P2). More 
commonly however the decibel is 
used to measure ratios of 
amplitudes, be they voltage, 
current, displacement etc.. Power 
is proportional to the square of 
amplitude, so the definition now 
becomes:   dB=10log10(A1

2/A2
2) 

or:   dB=20log10(A1/A2). 
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Fig.3.8. Open loop resonant stage 
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Fig. 3.9 shows a block diagram with integrator and feedback. Things 
have suddenly got a bit complicated. As well as the integrator we have  

 

now added differential and proportional forward paths to create 
something like a classic Proportional, Integral and Differential (PID) 
controller. As will be shown, this can improve the performance 
enormously.  

Integral Path 

The integral path goes along the top of the diagram. Starting at the top 
left, xc is the command input, in this case a step waveform, which is 
compared with the sensor output by the block 'Error 1'. The error signal 
output, xerr1, can be clipped at a settable level before being integrated, 
the reason for doing this will be shown later. The integrated error signal 
is then added to the proportional and differential terms by the 'Sum' 
block and passed to the resonant stage. The 'Sensor (H(s))' block 
measures the resultant stage motion to give the measured position xm. 

Proportional Path 

The next layer down generates the proportional term.  In a classic PID 
controller the error signal used for the proportional term would be the 
same as that used for the integral term. However the response can often 
be improved by varying the amount of command signal used to 
generate the proportional term. This is known as 'set point weighting' 
and is controlled by the gain block 'Gsp', the set point gain. 

Differential Path 

This departs from the classic PID implementation which again would act 
on the same error signal as the integral term. In general it is best to 
differentiate only the position information. The differential signal then 

1
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Fig. 3.9. Closed-loop Control 
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gives a term proportional to the velocity of the moving stage and  thus 
provides classic velocity feedback without the aid of a tachometer. 
Velocity feedback can greatly help in damping out resonances . 

The transfer function used in the differentiator is not a pure differential 
term ( which would be sτdiff) as the latter has very high gain at high 
frequency. This can introduce excess noise into the system with no real 
advantage in respect of resonance control. The transfer function used 
rises to unity at high frequency so the form of the function is set by τdiff 
and Gdiff . Gdiff is the effective maximum gain along this path. 

Resonant Stage 

The stage is a simple resonant structure as used in the open loop 
model.  

 

 

 

Response Curves and Settling Time 
The frequency and step response depends on the amplitude of the 
command. With small signals the response depends mainly on the PID 
parameters chosen, the large signal response depends mainly on the 
slew-rate. The various domains are described in the next two sub-
sections. 

Small signal response 

Small signal response depends almost entirely on the PID parameters 
and is characterised by a frequency v. amplitude curve and response to 
a step input 

Settling time is defined as the time taken to get to within a certain 
percentage of the command step, we generally use 2 %. Fig.3.10 shows 
the frequency and step response for the control loop with just the 
integrator operating. The table gives the loop parameters and the 
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resultant settling time. 

Command step xc 1 µm Differentiator gain  Gdiff 0 

Integrator limit  xerr1.max  7.5 µm Proportional gain  Gprop 0 

Integrator time constant τint 4 ms Set point gain  Gsp 0 

Differentiator time constant τdiff 0 Small signal settling time txs.s Never settles 

 

The response plotted is the fastest that can be done with just the 
integrator operating, reducing the integrator time constant results in 
uncontrollable oscillation.  As can be seen the step response is not 
very fast and ringing is permanently present from the resonant stage. 
The frequency response also is very poor, starting to roll off at just a 
few Hz and the peak at the stage resonant frequency is still clearly 
visible.  

 

Command step xc 1 µm Differentiator gain  Gdiff 5 

Integrator limit  xerr1.max  7.5 µm Proportional gain  Gprop 1 

Integrator time constant τint 0.7 ms Set point gain  Gsp 1 

Differentiator time constant τdiff 15 µs Small signal settling time txs.s 4.68 ms 

 

 

Fig. 3.11 shows a somewhat better response and illustrates the effect of 
the various loop parameters. In general the differential terms combat 
ringing (they add damping), the integrator controls the overall settling 
envelope and the proportional terms affect the attack at the start of the 
step. In this example the frequency response is a bit flatter and the 

Fig. 3.10. Integrator only 
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settling times have improved, but the performance is not yet as good as 
it can be. 

Fig. 3.12 shows a response optimised for settling time, now things are a 
lot better. The oscillations have been damped out completely and the 
frequency response is flat and well behaved up to a few hundred hertz.  

This is good but what happens when a large command step is applied? 

Large signal response  

Fig. 3.13 shows the response to 50 Hz sine and square waves ranging in 
amplitude from 1 µm to 6 µm. The system parameters are as for Fig. 3.12. 
As can  be seen, the response to steps greater than about 1 µm or sine 
waves greater that about 3 µm peak is positively ghastly.  

The problem comes from the finite drive capability of the piezo drive 
amplifiers. This limits how fast the stage can move, and for large signals 
the stage will be asked to 'slew' at this maximum rate. The slew rate due 
to the drive amplifiers in the system described is 1 µm·ms -1. While the 
drives are slewing, the servo loop is effectively out of control. 

 

Command step xc 1 µm Differentiator gain  Gdiff 10 

Integrator limit  xerr1.max  7.5 µm Proportional gain  Gprop 0 

Integrator time constant τint 0.55 ms Set point gain  Gsp 0 

Differentiator time constant τdiff 15 µs Small signal settling time txs.s 0.88 ms 
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Fig. 3.12. Optimum Response 
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Command step xc 1 µm Differentiator gain  Gdiff 10 

Integrator limit  xerr1.max  7.5 µm Proportional gain Gprop 0 

Integrator time constant τint 0.55 ms Set point gain  Gsp 0 

Differentiator time constant τdiff 15 µs    

 

and the integrator will 'wind up' trying to get the piezos to move where 
they should be faster than they can. This causes the overshoot and, in 
some cases, completely chaotic response. 

The answer to this problem is to limit the slew rate of the integrator to 
be equal to or less than that of the drive amplifiers. This is done by 
limiting the amplitude of the signal going into the integrator. If there is a 
constant (clipped) signal applied to the integrator its output will ramp at 
a rate given by 

 u
x

int.max
.max= err

int

1

τ
    (3.19) 

where τint is the integrator time constant and xerr1.max the integrator input 
limit. The integrator time constant used is 0.55 ms so limiting the input 
to 0.55 µm gives an integrator slew rate of 1 µm·ms -1, the same as the 
piezo drive. The result of doing this is shown in Fig. 3.14. This is a far 
better response and in Queensgate’s digital systems  xerr1.max is settable 
by the user to optimise the large signal performance. 

-6

-4

-2

0

2

4

6

8

0.000 0.005 0.010 0.015 0.020 0.025

Time  (s)

P
os

iti
on

  (
µm

)

-3

-2

-1

0

1

2

3

4

5

6

7

0.000 0.005 0.010 0.015 0.020 0.025

Time  (s)

P
os

iti
on

  (
µm

)

 

Fig. 3.13. Large signal response 
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Command step xc 1 µm Differentiator gain  Gdiff 10 

Integrator limit  xerr1.max  0.55 µm Proportional gain  Gprop 0 

Integrator time constant τint 0.55 ms Set point gain  Gsp 0 

Differentiator time constant τdiff 15 µs    

 

 

 

 

What are small and large signals? 

This depends on the nature of the command signal and the system in 
question. We can now define in general terms that a large signal is any 
signal that causes the stage to slew. For a step input, this is any 
command larger than the integrator input limit, for a sine command it 
depends on the sine amplitude and frequency. For a sine input, the 
maximum rate occurs at the zero crossing point and is given by 

 u fAsine.max = 2π     

 (3.20) 

where f is the frequency and A the amplitude. Thus for a 50 Hz sine 
input, the maximum amplitude that can be followed without slewing is 
3.18 µm. This can be seen in the Fig.3.14, the 3 µm sine wave is just not 
slewing at the zero crossing point but the 4 µm one definitely is. 

The converse of equation 3.20 is that any sine signal for which Af <= 
usine.max/2π is a small signal. In this case the frequency response is given 
by the frequency response curve, such as that in Fig.3.12. 
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Fig. 3.14 Optimised large signal response 
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Large signal settling time 

Obviously this depends on the slew rate and the amplitude of the 
command signal step. In general it is given by 

 t
A

u
txs l xs s.

int.max
.= +     (3.21) 

where txs.s is the small signal settling time. 

SUMMARY 
Stage positions can be controlled much more accurately using a closed-
loop controller. The static and dynamic performance of the controller is 
determined by its PID parameters and integrator slew rate, all of which 
are user settable in Queensgate’s digital control systems . This allows 
inherently resonant systems to be controlled with a precision far greater 
than could be achieved with open loop or simple analogue closed loop 
controllers. 

 

 

 

 

 

 

 

APPENDIX 

Reversing power series 
Given a power series 

y ax bx cx dx ex fx= + + + + + +2 3 4 5 6 .....   (3.22) 

the coefficients of the reverse series 

x Ay By Cy Dy Ey Fy= + + + + + +2 3 4 5 6 .....   (3.23) 

are given by 

A
a

=
1

       (3.24) 
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B
b

a
= − 3       (3.25) 

( )C
a

b ac= −
1

25
2      (3.26) 

( )D
a

abc a d b= − −
1

5 57
2 3     (3.27) 

( )E
a

a bd a c b a e ab c= + + − −
1

6 3 14 219
2 2 2 4 3 2  (3.28) 

F
a

a be a cd ab c a f a b d

a bc b
=

+ + − −

− −











1 7 7 84 28

28 4211

3 3 3 4 2 2

2 2 5  (3.29). 

Derivation of reverse coefficients for higher order series is left as an 
exercise for the reader! Alternatively see Dwight 1961. 

These formulae can be used to derive the ‘b’ coefficients if the ‘a’ 
coefficients are known, or vice versa. 

REFERENCES 
H.  B. Dwight, Tables of Integrals and other Mathematical Data, 

MacMillan Publishing Co., Inc. New York 1961 

 

CHAPTER 4. MATERIAL PROPERTIES 

General considerations of material selection in conventional mechanical 
designs remain relevant in the design of precision instruments, however 
the dominant concerns may be different: for example strength and mass 
may not matter  too much but the ability to maintain stability of shape 
and dimension, often to a high degree, probably does.  Because material 
is used in small amounts, material cost may not have a significant 
influence on the total cost. Therefore higher priority can be given to 
obtaining the limits of possible performance and use of a wide range of 
exotic materials may become feasible. 

In this Chapter: 
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DIMENSIONAL STABILITY 

Thermal properties 
Thermal properties of construction materials are always a major concern 
for both designing and using  precision instruments. In normal use, all 
mechanical devices encounter heat inputs caused by environmental 
temperature change, by power dissipation in actuators, by operator 
handling and so on. The direct effect of the thermal disturbance is the 
thermal expansion which will cause dimensional changes in mechanical 
components, resulting in the loss of instrument accuracy. The 
dimensional change of  a material due to a change in temperature is 
characterised by its Coefficient of Thermal Expansion (CTE), which 
varies tremendously with different materials. The CTEs of some 
commonly used materials in precision engineering can be found in 
Table 4.1. For example, typical values are  23x10-6 ·K-1 for  

aluminium alloys, and 0.3x10-6 ·K-1 for SuperInvar. This means that 
10 mm of material will expand 230 nm per degree for aluminium alloys 
and 3 nm per degree for SuperInvar. It is obvious that temperature 
stability can not be ignored when working in the nanometre regime.  

Parameter Aluminiu
m 
2024 

Aluminiu
m 
7075 

Stainless 
steel 

Invar 36 Super-
invar 

Zerodur Units 

CTE 
 

22.9  23.4 12 1.26 0.31 0 ± 0.05 10-6·K-1 

Thermal 
conductivity 

119-190 142-176 25 11.1 10.4 1.64 W.m-1·K-1 

Young’s modulus 
 

73.1  71.7 190-210 147 148 90.6 GPa 

Yield strength 76-393  103-503 280-700 276-414 303 90 
(maximum 
strength) 

MPa 

Density 
 

2.77  2.79 7.85 8.05 8.14 2.53 103 kg·m-3 

Fig. 4.1 CTE of various materials 

Table 4.1   Material properties 
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It has to be noted that the CTEs of all the materials vary with 
temperature as shown in Fig. 4.1 (from Berthold, et al, 1976). From 
Fig. 4.1 we can see that Superinvar and Zerodur have very low CTE at 
room temperature, while fused silica has zero thermal expansivity near 
170 K.  In general, to reduce the thermal effect, construction materials 
with minimal thermal expansion coefficient should be used. However in 
some cases low thermal expansivity is not as useful as is the close 
expansivity match between the device and its mounting. Moreover, 
corrections to cope with thermal expansion are possible through control 
methods: the temperature can be measured and used to provide a 

correction.  

Another problem is thermal gradients. They cause structure distortion, 
for which compensation is not possible. To avoid the effects of thermal 
gradients, the materials  can be chosen either with low thermal 
expansivity (the material does not respond to temperature changes) or 
with high conductivity (the system reaches thermal equilibrium 
quickly).  

Material CTE
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Temporal stability 
Temporal stability refers to a material’s dimensional changes with time 

without external force applied to the sample. If the thermal stability is 
considered as a short term effect, then the temporal stability can be 
taken as a long term effect. There is very little data on this property, 
except for some very low thermal expansion materials such as Invar, 
Superinvar and Zerodur etc.. These materials are normally used for  
construction of precision instruments and machine tools therefore their 
stability, both thermal and temporal, is of great concern. For example, 
Invar’s low thermal expansion coefficient is about 1.26x10-6·K-1 but its 
isothermal length change with time, however, can be as large as 0.1x 
10-6·day-1. The elongation with time eventually halts, but this may take 
as long as 30 years (Physics and applications of Invar alloys, Honda 
Memorial Series on Materials, 1978). This period can be shortened by 
proper heat treatments. Delayed elastic deformation of Zerodur at room 
temperature upon release of external forces applied for a significant time 
interval has been observed by many researchers (Pepi and Golini, 1991; 
Yoder,1993). The temporal change of sample length for a number of low 
thermal expansion materials is shown in Fig. 4.2 (From Berthold et al., 
1976). Indeed, with reasonable control of the ambient temperature, 
pressure, humidity and magnetic field, temporal instability may be the 
factor limiting performance. 

MECHANICAL PROPERTIES 
Generally speaking,  mechanical design can do a lot to satisfy the needs 
for stiffness and strength, providing the space is not too highly 
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restricted, so the value of Young’s modulus and yield strength are less 
important than thermal properties for the design of precision 
instruments.  However, to reduce the effects of the environment many 
precision devices are deliberately designed to be small. Then the 
mechanical properties of materials have to be carefully considered. For 
example, the material’s strength may limit the maximum range which can 
be achieved by flexure mechanisms; a low Young’s modulus may not be 
able to provide a sufficient stiffness for the NanoMechanism or its 
frame, which is sometimes used as the metrological datum; the hardness 
may affect the contact stiffness between the mechanism and its 
actuators, which has a direct effect on the resonant frequency of a 
mechanical system. Also the mass of material can make a big difference 
to the dynamic properties of NanoMechanisms. For example the density 
ratio of SuperInvar and aluminium alloys is about 3, so the resonant 
frequency of an aluminium system can be  √3 times higher than that of a 
SuperInvar system if the stiffness of the systems are the same. In the 
design of flexure hinge mechanisms, it is important that the materials 
have good  fatigue properties so that the lifetime is maximised. Normally 
the fatigue strength is defined as the maximum stress under which the 
samples will not fail after 107stress cycles for steels and 5 x 108 for 
aluminium. The fatigue life of components are affected by many factors 
including material, geometry, surface roughness, machining method, 
heat treatment, surface coating and so on (Collins, 1993).          

Machineability 
Machineability of material is another limit for the design of 
NanoMechanisms. First of all, the material selected has to be 
machineable for required geometrical figures. For example, most of our 
flexure stages are cut with electro-discharge machining. Glass ceramics 
are obviously not available for this application although they have 
many good properties. On the other hand, machining cost dominates 
the price of the products because most of the components in 
NanoMechanisms  are relatively small in size, so the effect of material 
cost is not significant. Machineability of material depends on material 
properties such as strength, hardness, toughness and thermal 
conductivity, etc..  

 

 

SOME TYPICAL MATERIALS 

Zerodur 
Zerodur is a transparent, homogenous glass  ceramic with an 
exceedingly low coefficient of thermal expansion compared with other 
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low expansion materials: about 0.1x10-6·K-1 at temperatures between -30 
and +70 C. Its brittleness restricts its application in systems carrying 
tensile and bending loads. It is normally manufactured by grinding with 
diamond tools, therefore can only be used for components of very 
simple shape. Zerodur is a good substrate material for capacitance 
sensor pads because of its ideal dielectric properties, long time stability 
and chemical stability.  

Invar and SuperInvar  
Invar and SuperInvar are alloys of iron and nickel with very low thermal 
expansivity. Invar contains 36 % nickel with small quantities of 
manganese, silicon and carbon, having a typical thermal expansion 
coefficient of 1.3x10-6·K-1. Substitution of 5 % cobalt for 5 % nickel 
provides SuperInvar which has an even lower thermal expansion 
coefficient (0.3x10-6·K-1) and higher temporal stability than Invar. Their 
CTE remain stable and low over a limited range (typically 4 to 38 C for 
Invar) and the CTE changes relatively rapidly outside this range. Note 
that SuperInvar undergoes a phase change when cooled to below -50 C 
so it is not a good material of choice when exposure to such low 
temperatures is anticipated. For maximum stability and minimum CTE 
parts need to be properly heat treated. Invar and SuperInvar can be 
fabricated using conventional metalworking techniques and so are easy 
to use for  components of complex shapes. Their toughness and 
elasticity make them suitable for flexure mechanisms although high 
density may be a disadvantage for design if high resonant frequency is 
required. The fact that they are magnetic can be used to advantage in 
low strain mounting schemes. 

Aluminium alloy 
 
Aluminium alloy is one of the most commonly used materials in 
engineering construction. Precision instruments mainly use its 
properties of good thermal conductivity, ease of manufacturing (low 
machining cost) and low mass. It has to be carefully used because of its 
high thermal expansion. This material is often chosen  for thermal 
matching. Taking  the Atomic Force Microscope (AFM) in Fig.4.3 as an 
example, the X-Y scanning stage forms a part of metrological loop. If the 
material of the frame, on which both probe and scanning stage are 
mounted, is aluminium, then the stage has to be made of same material 
to compensate the thermal expansion error from the frame. Besides, 
when low mass or high resonant frequency are required aluminium 
becomes a very attractive material due to its low density. 

 
Fig. 4.3 Atomic Force Microscope 
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Stainless steel 
Some precision instruments are built of stainless steel. The thermal 
expansion coefficient of stainless steel is lower than aluminium, but its 
thermal conductivity is poor. Therefore, the thermal effects are still a big 
problem. Its machinability is similar to SuperInvar. 

Rusting resistance is the main merit of using the material. No plating or 
other surface treatments are needed, which would tend to increase the 
fatigue life of the components. Its high Young’s modulus makes 
stainless steel more advantageous than aluminium when high stiffness 
is needed.  

REFERENCES 
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CHAPTER 5. CAPACITANCE SENSORS 

The concept of electrical capacitance was first reported by Pieter van 
Musschenbroek at the University of Leyden in 1745 while trying to 
store static electricity in a jar of water (the Leyden jar). However one 
has to wait until 1873 for Maxwell to give a concise definition of 
capacitance.  
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The Leyden jar used water in a jar as 
one terminal of a capacitor, 
connection was made by a chain 
dangling into it. The other terminal 
of the capacitor was the worker’s 
hand holding the jar. It would 
appear that the amount of charge 
stored was measured by the strength 
of the electric shock received when 
the chain was removed. 

In later versions the hand was 
replaced by a layer of tin foil. 

 

 

 

Michael Faraday (1791 to 1867) 
after whom the unit of capacitance, 
the farad, is named is actually 
remembered more for his work on 
electromagnetic phenomena than 
capacitance. He did, however do a 
lot of work on the relative permittivity 
of various materials 
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Capacitance relates to the ability of electrically isolated conductors to 
store charge. Given an arbitrary arrangement of conductors as 
illustrated in Fig. 5.1, the capacitance Cij between conductors i, j is 
given by 

C
Q

V Vij
ij

i j

=
−

     (5.1) 

where Qij is the charge on conductor i induced by the potential 
difference Vi-Vj; Vi is the potential on conductor i and Vj is the potential 
on conductor j (Maxwell, 1873; reviewed more recently by Heerens, 
1986). It should be noted that the capacitance between conductors i 
and j relates only to their potentials Vi,Vj and not to the potential of 
adjacent conductors. The presence of adjacent conductors, not their 
potential, influences the capacitance. 

LONG AND SHORT-RANGE MICROMETERS 
The simplest form of practical capacitor is the parallel plate capacitor 
shown in Fig. 5.2. The capacitance, C, is given by 

 C
A

d
r=

ε ε0      (5.2) 

where εr is the relative permittivity of the medium between the plates; ε0 
is the permittivity of vacuum; A is the plate area and d the plate 
separation or gap. As all the text books say, this equation ignores edge 
effects. More of this later. 

Given that one can measure capacitance, the parallel plate capacitor can 
be made into a micrometer by letting the displacement to be measured 
vary the gap, d, or the area, A. Area can be varied by letting the 
displacement vary the overlap between the plates, for example as 
shown in Fig. 5.3a. A variation of this shown in Fig. 5.3b is the familiar 
rotary tuning capacitor that can be used to measure rotation. These 
configurations are fine for measuring large displacements, but care must 
be taken to ensure there is little gap change as a small change in gap 
can give a large change in capacitance. This can be minimised (but not 
eliminated) by using coaxial cylinders for the linear case and a multi-

Cij

Vi

Vj

 

Fig. 5.1. Isolated conductors 

d

A

 

Fig. 5.2. A parallel plate capacitor 

The 1986 recommended values of the physical constants defines ε0 as 1/µ0c2 where µ0 is the permeability of vacuum and c 
is the speed of light. The speed of light is defined as exactly 299 792 458 m·s-1 and the permeability of vacuum as exactly 
4π€x 10-7 N·A-2 (Defining something as exactly related to an irrational number is an interesting concept!) To give some 
values:  

c = 299 792 458   m·s-1 
µ0 = 12.566 370 614...x 10-7 N·A2 
ε0 = 8.854 187 817...  pF·m -1 

It is interesting to note that if the plates of a parallel plate capacitor are circular, then the pi’s in the expression for the 
plate area and definition of ε0 cancel and the capacitance is a rational number!  
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vaned arrangement for the rotational case. 

 

Target and probe electrodes 
The sensitivity to gap change does, of course, give us a more sensitive 
way of measuring displacement: let the displacement vary the gap. 
Fig. 5.4 shows implementations for measuring small linear 
displacements and rotations. One plate is made larger than the other to 
minimise the effects of motions at right angles to the displacement 
being measured: this really does work! The smaller plate is usually 
called the 'probe' and the larger one the 'target'. 

Sensitivities 
The sensitivity of each configuration is approximately the same when 
considered in terms of fraction of the mechanical parameter being 
varied. For example if the effective plate area is doubled by changing 
the overlap, the capacitance is doubled; if the gap is doubled the 
capacitance is halved etc., the dynamic range is approximately the same. 
It is, however, instructive to put in some numbers. 

Consider the cases with plates having dimensions a,b. The 'b' 
dimension is up out of the page. In the long range rotational case of 
Fig. 5.3b, 'a' is the difference between the external and internal plate 
radii  r2 and r1. Let the nominal d value be d0 and the nominal rotation 
θ0. For computation of numbers, let: 

a = b = 10.63 mm 
a0 = r1=2 mm 
d0 = 0.1 mm 

d

a). Linear micrometer                          b). Rotational micrometer

γ

a

a

r2

r1

 
Fig. 5.3. Long range micrometers: area change 

d θ

a). Linear micrometer              b). Rotational micrometer

aa
a0

 

Fig. 5.4. Short range micrometers:  
             gap change 
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θ0 = 20 mrad (short range: gap change) 
γ0 = 1.4 rad  (long range: area change). 

These numbers are chosen to make the nominal capacitances of each 
configuration approximately 10 pF, for comparison purposes. 

Long-range linear (area change) 

C
ba

d
r= =

× × −

× − =
ε ε0

0

8.85 10.632 10 6

100 10 6 10.0 pF   (5.3) 

 

dC
a

b
d
r

d
fF m 1= = ⋅ −ε ε

µ0

0

0 94.     (5.4). 

Long-range rotational (area change) 

( ) ( )
C

r r
d

r=
−

=
− ×

× × − =
ε ε γ0 2

2
1

2
0

02

8.85 0.012632 0.0022 1.453

2 100 10 6 10.0 pF

       (5.5) 

( )d
d

6.88 pF rad 1C r r

d
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Short-range linear (gap change) 
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Short-range rotational (gap change) 
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The sensitivities of the short-range configurations are thus about 80 to 
100 times greater than the long range, though of course the useful 
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range is correspondingly less. In general the useful range is about 
equal to the nominal value of the gap (short range) or plate overlap 
(long range). The results for these examples is summarised in Table 5.1. 

Configuration Range Nominal capacitance Sensitivity 

Long-range linear 10 mm 10 pF 0.94 fF·µm-1 

Long-range rotation 1.5 rad 10 pF 6.9 fF·mrad-1 

Short range linear 100 µm 10 pF 100 fF·µm-1 

Short-range rotation 17 mrad 10 pF 580 fF·mrad-1 

CAPACITANCE MEASUREMENT CONSIDERATIONS 
It will have been noticed that the capacitance is directly proportional to 
the displacement being measured in the long-range case, but is 
inversely proportional in the short-range case. Does this mean that the 
short-range configurations are inherently non-linear? The quick answer 
is no. 

Consider a source of alternating voltage applied across a capacitor C 
(Fig.5.5). An alternating current I will flow given by 

 I j VC= ω      (5.11) 

where ω is the angular frequency of the alternating voltage, or 2πf where 
f is the frequency in hertz. The current is directly proportional to the 
capacitance, the j indicates that the current is 90° out of phase with the 
voltage. Thus if a constant amplitude voltage is applied to a long-range 
micrometer capacitor, the current will be directly proportional to the 
displacement or angle being measured. Current is relatively 
straightforward to measure so we have an inherently linear measuring 
device.  

Now re-arrange equation 5.11 to give 

 V
I

j C
=

ω
     (5.12). 

If a constant amplitude current is passed through the capacitor, the 
voltage developed across it is inversely proportional to the 
capacitance. Thus by applying a constant current the voltage will be 
directly proportional to displacement or angle in the short-range 
configuration. Now by measuring the voltage we have an inherently 
linear measuring device. 

If, then, displacement or angle can be measured linearly, why did we 
spend so much time in Chapters 2 and 3 talking about mapping 
functions? Enter the real world. 

Table 5.1. Sensitivities 

V C

I
 

Fig. 5.5. Current through a capacitor 
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PRACTICAL CAPACITORS 
The capacitance of a parallel plate capacitor is usually calculated using 
equation 5.2, but as has been stated, this equation ignores edge effects . 
It also ignores the effect of plate tilt , flatness and finish, and equations 
5.11 and 5.12 ignore the contribution of stray capacitance to C. All 
these things conspire to make sensors that depart from perfect linearity. 

Queensgate is primarily concerned with the measurement and control of 
small displacements, so all our sensors work in the short-range gap 
change mode. Only the short range linear configuration will be 
considered from now on and with circular rather than rectangular plates. 

The C of equation 5.2 can be modified to include the extra effects: 

( )C C Cs' = + +1 η      (5.13). 

C is also a function of electrode finish, flatness and tilt. η is a correction 
depending on the guard ring configuration, see below. 

Cs is stray capacitance in parallel with the sensor capacitor and could 
arise from unshielded wiring or edge effects. 

The trick now is to determine what effect these error terms have on the 
sensor performance. 

Stray Capacitance 
Ignoring η and tilt etc. for now, Equation 5.12 can re-written to include 
stray capacitance  

 ( )V
I

j C Cs

=
+ω

    (5.14) 

which gives 

 ( )V
Id

j A C dr s

=
+ω ε ε0

    (5.15). 

This is obviously non-linear in d. Equation 5.15 is more conveniently 
written 

  ( )V
Id

j C d C ds

=
+ω 0 0

    (5.16) 

where C0 is the sensor capacitor value at the nominal gap d0. 
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Non-Linearity. 75fF Stray Capacitance
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Fig. 5.6 shows a plot of equation 5.16 with C0=10 pF; d0 =100 µm and 
Cs=75 fF. I/ω has been normalised to give a nominal slope of unity, i.e. 
the measured spacing is nominally equal to the true spacing. The ‘j’ 
term just means that the voltage is 90° out of phase with the current and 
is ignored. 

The residual curve (right hand scale) shows a maximum departure from 
linearity of about 0.1 µm in 100 µm or 0.1%. This is quite large 
considering that 75 fF is a relatively small capacitance and shows the 
importance of keeping stray capacitance in parallel with the sensor 
capacitor to a minimum. Of course if the sensor is part of a stage, the 
whole system can be calibrated and this effect taken out by means of 
the mapping function. However, as will be shown in the following 
sections, it can be designed out in the first place. 

Guard rings 
The simple short-range configuration of  Fig. 5.4a suffers from edge 
effects that tend to make the capacitance larger than equation 5.2 would 
suggest. This deceptively simple configuration is one that has not (to 
the authors knowledge) been solved analytically using Laplace’s 
equation, as the boundary conditions are hard to define (see 
Appendix). Jones and Richards (1973) consider the effect to be a 
constant stray capacitance, after the work of Scott and Curtis (1939) 
and quote a value that gives around 23 fF·mm-1 of edge. Maxwell (1873, 
treatise 195 or thereabouts) says that the apparent area of a capacitor 
increases with gap, d, and is given by 

Fig. 5.6 Effect of stray capacitance 
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 ′ = +A A ld
ln2
π

    (5.17) 

where l is the length of edge. As the area increases with gap, the 
capacitance increase is constant with gap and is  

 Cs r= ε ε
π0

2ln
     (5.18) 

per unit of edge. This works out as 2 fF·mm-1, about ten times lower 
than quoted by Jones and Richards. To resolve the conflict, a capacitor 
with edge effects has been analysed at Queensgate using finite element 
analysis . Also the effect has been calculated to be approximately 
εrε0/π√2 or 2 fF·mm-1 by Hicks (1997) using integral techniques. We 
believe Maxwell! 2 fF·mm-1 seems about right. 

As has been shown, stray capacitance whatever its cause is a bad 
thing. The example of Fig. 5.6 used a stray capacitance of 75 fF which is 
the extra contribution due to edge effects of our test capacitor with 
radius 6 mm. This edge-effect contribution can be minimised by using a 
guard ring and various guard configurations are shown in Fig. 5.7. They 
are: 

a) parallel plate capacitor with simple guard ring and thin plates 

b) parallel plate capacitor with simple guard ring and thick plates 

c) parallel plate capacitor with target surrounding guard 

d) parallel plate capacitor with guard surrounding target. 

r1

r2

r3 d

r1
r2

r3
d

h

r1

r2

r3 d

r1

r2

r3 d

   a)                                                                        b)

    c)                                                                        d)
 

Fig. 5.7 Guard configurations 
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Configurations ‘a’ and ‘b’ are both in use in Queensgate products; ‘c’ 
and ‘d’ can be used for very precise systems, especially if radiated 
interference susceptibility is an issue.    

First let us define some intermediate terms  

 r
r r

i =
+1 2

2
                  (5.19)                

 s r r= −2 1                (5.20).              

Thin plates with simple guard ring 

This configuration gives a capacitance very close to the 'perfect' case 
and is the one used most commonly by Queensgate, but there are errors 
due to the finite value of 's'. Heerens and Vermeulen (1975) quote a 
correction originally derived by Moon and Sparks (1948). In this case C 
in equation 5.13 is given by 

 C
r

d
r i=

ε ε π0
2

     (5.21) 

and: 

 η
π

π
= −







s
r d

r
di

i
2

2
coth    (5.22). 

This is valid for 

 s d<<       (5.23) 

 r r d3 2 5− >      (5.24). 

The coth (hyperbolic co-tangent) term can usually be ignored. 

Fig. 5.8. Guarded capacitor 
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Non-Linearity. Guarded capacitor
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Fig. 5.8 shows a plot of  measured spacing against true plate spacing 
incorporating the correction term of equation 5.22 but ignoring stray 
capacitance and other error terms. Again the slope is normalised to 
unity. The capacitor parameters are:  

radius:  6 mm 
guard gap:  25 µm 

This gives a nominal capacitance of 10 pF at 100 µm electrode spacing.  

As can be seen from the residual curve in Fig. 5.8, the maximum 
departure from linearity is less than 1 pm over the dis placement range of 
100 µm. This is a negligible linearity error showing that the guard ring 
really does reduce the edge effects. A simple guard ring is relatively 
easy to make and gives a significant improvement in linearity. 

Other guard configurations 

Error terms for the other configurations, ‘b’, ‘c’ and ‘d’ of Fig. 5.7, have 
been derived by various workers. Heerens and Vermeulen (1975) have 
used Laplace’s equation to solve configurations ‘c’ and ‘d’ which are 
the only ones where the boundary conditions are well defined: the full 
answer is an infinite series of modified Bessel functions of the first and 
second kind with order zero, but there are valid approximations that are 
more manageable (Equations 5.27 and 5.28). Brown and Bullied quote a 
solution for ‘b’, thick capacitor plates, valid if h is five times d or 
greater, equation 5.25. This comes from the equations of Maxwell 
(1873): the factor of 0.22 is the ubiquitous (ln2)/π. 

Configuration ‘b’ 
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η =
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    (5.25). 

Equation 5.25 is valid for: 

 h s≥ 5       (5.26). 

 

Configuration ‘c’ 
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Configuration ‘d’ 
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   (5.28). 

It is left as an exercise to plot out the non-linearity that would occur 
with these configurations!  

Plate Tilt 
Tilt of one capacitor plate with respect to the other can seriously affect 
linearity. Again if the sensors are mounted in a stage, this will be 
calibrated out, but care must be taken if the sensors are used stand-
alone. There are many expressions for the variation of capacitance with 
plate tilt, see the Appendix to this chapter. A convenient one is derived 
by Harb et al. (1995) 

 C
r

d k
r i=

+ −











2 1

1 1
0

2

2

ε ε π
   (5.29) 

where 

 k
r

d
i=
sin2
2

θ
     (5.30). 

The correction terms of 
equations 5.27 and 5.28 are 
around 10-29 so these 
configurations will give superb 
linearity. Equation 5.25 is 
around 0.004 so will not be so 
good. 
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Fig. 5.9 shows capacitance as a function of tilt angle at 100 µm nominal 
gap for the test capacitor with 6 mm radius. The nominal gap is defined 
at the centre of the electrode. As can be seen, a 5 mrad tilt changes the 

capacitance by 0.25 pF, which is quite a lot.  

Residuals v. Displacement
d0 = 0.1 mm;  r = 6 mm
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Capacitance v. Tilt
d0 = 0.1 mm;  r = 6 mm
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Fig. 5.9. Capacitance v. tilt 
r=6 mm; d0=100€µm; C=10 pF 

Fig. 5.10. Residuals at various tilt 
angles up to 5 mrad. 
r=6 mm; d0=100€µm; C=10 pF 
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More importantly, a constant tilt will effect the linearity of the 
measurement, Fig. 5.10 shows a family of residual curves for various tilt 
angles. In this plot tilt varies from 0 to 5 mrad. What does this mean for 
the user? A sensor as supplied will have been calibrated at zero tilt to 
have a scale factor of unity and linearity within the quoted specification 
for that sensor, i.e. the measured displacement is the same as the true 
displacement (within the calibration errors: see Appendix to Chapter 7). 
If then the sensor is mounted with a tilt angle, it will no longer be linear: 
Fig. 5.10 shows the residuals one could expect and Fig. 5.11 shows the 

resultant variation of linearity with tilt. The non-linearity can be quite 
large: 5 mrad tilt gives about 0.6% non-linearity (remember, non-linearity 
is calculated as half the peak to peak value of the residual curve 
expressed as a percentage of the range). 

Also the scale factor will differ from unity. Fig. 5.12 shows how the 
scale factor changes with tilt, as tilt is increased the scale factor 
increases. This means that a true displacement of, say, 1 µm will be 
measured as something larger than 1 µm if there is a tilt. Introducing a 
tilt also affects the nominal zero point of the measurement. The other 
curve of Fig. 5.12 shows this.  

Non-linearity v. tilt
d0 = 0.1 mm;   r = 6 mm
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Fig. 5.11. Non-linearity v. tilt 
r=6 mm; d0=100 µm; 
C=10 pF 

Fig. 5.12. Scale-factor and offset v. 
tilt r=6 mm; d0=100€µm; C=10 pF 
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Scale-factor and Offset
d0 = 0.1 mm;  r = 6 mm
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These plots are for our test capacitor of 6 mm radius and 100 µm 
nominal gap. In general, sensor capacitors with larger nominal gaps will 
be affected less by tilt as the gap change from centre to edge is less 
when expressed as a fraction of the nominal gap. This is shown in 
Fig. 5.13. 

Fig. 5.13 shows the variation in non-linearity with nominal gap for a 
measurement span of 100 µm and constant tilt angle of 5 mrad. Two 
plots are shown: constant area and constant capacitance. The constant 
area plot is for our standard test capacitor with 6 mm radius, the nominal 
capacitance will vary from 10 pF to 1 pF as the nominal gap varies from 
100 µm to 1 mm. The constant capacitance plot shows the variation that 
would be obtained if the radius of the electrodes were adjusted at each 
nominal gap to give 10 pF capacitance. The radius would have to vary 
from 6 mm at 100 µm nominal gap to 19 mm at 1 mm nominal gap. 

 

Fig. 5.13. Non-linearity v. d0 at 
constant capacitance (10 pF) and 
constant electrode radius (6 mm). 

Scale factor 

Offset 
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Non-linearity v. Nominal Gap.
Tilt angle = 5 mrad; Span = 100 µm.
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As can be seen, the non-linearity for a given measurement span and tilt 
reduces enormously if the nominal gap is made larger, especially if the 
electrode radius is kept constant and the nominal capacitance is 
allowed to fall. Of course there would be a price to pay for doing this: 
noise. More of this later. 

Plate bend 
Just as tilt of one plate with respect to the other causes capacitance 
change and non-linearity, so will a bending of one plate with respect to 
the other. Fig. 5.14 illustrates a capacitor with one plate spherically 
bowed. The amo unt of bending is measured by the difference between 
the centre and edge gaps. A negative ‘bow’ indicates one plate is 
concave: the gap is larger in the centre as shown and R is considered 
negative. If the gap at the edge is greater than at the centre, then the 
bow is positive and R is considered positive. 

The capacitance of this configuration can be found by integration of 
infinitesimal parallel plate capacitors as described in the Appendix. In 
this case 

 C
x

d R R x
xr

r
=

± −
∫2 0

0
2 20

πε ε
µ

d   (5.31) 

and 

 ( ) ( )d R R r Rbow = − −2 2 sgn    (5.32). 

 

r

dbow

R

 

 Fig. 5.14. Bowed capacitor 
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sgn(R) is -1 if R is negative; 0 if R is zero and +1 if R is positive. After 
suitable manipulation we have 

 ( )C d d R
d
dr bow
bow= − + −

















2 10 0

0

πε ε ln  (5.33). 

Defining the plate curvature as 1/R, Fig. 5.15 is a plot of capacitance v. 
bow given by the curvature varying from -0.2 m-1 to +0.2 m-1. This gives 
a maximum bow of around 36 µm.  

Capacitance v. bow
d0 = 0.1 mm;  r = 6 mm
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Figs. 5.16 and 5.17 show the variation of non-linearity with bow and 
variation of scale factor and offset with bow. The residual curve is 
similar to Fig. 5.10. Just as the case for tilt, linearity improves if the 
nominal gap is made larger. 

Fig. 5.16 shows that the non-linearity can be quite large if the plates are 
seriously bowed, especially if they are concave.  

 

 

 

 

Fig. 5.15. Capacitance v. bow 
 r=6 mm; d0=100€µm; 
C=10 pF 
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Non-linearity v. bow
d0 = 0.1 mm;   r = 6 mm
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Scale-factor and Offset
d0 = 0.1 mm;  r = 6 mm
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NOISE 
If the plates of a capacitance sensor are held perfectly stationary at a 
fixed distance apart, the measured output will fluctuate due to electronic 
noise. This has been discussed in Chapter 2. As a rough rule of thumb, 
the rms measured noise density (pm·Hz-1/2) will be around  40x10-9 of the 
nominal gap for a 10 pF nominal capacitance. This scales with nominal 
capacitance, that is if the capacitance is doubled at a given nominal gap 
(by making the plates larger) the noise will be halved. 

Fig. 5.16. Non-linearity v. bow 
 r=6 mm; d0=100€µm; 
C=10 pF 

Fig. 5.17. Scale factor and offset 
v. bow 
 r=6 mm; d0=100€µm; C=10 pF 
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This does not bode well if one wishes to improve linearity by making 
the nominal gap larger. Doubling the gap from say 100 µm to 200 µm 
improves linearity for a tilted capacitor by over ten times but the 
nominal capacitance would halve. This doubles the noise coefficient 
and of course it is expressed as a fraction of the nominal gap which has 
also doubled. The noise is thus four times worse. For a fixed plate area 
the noise expressed as a displacement increases with the square of the 
nominal gap; for fixed capacitance it increases linearly with the nominal 
gap. Thus we have at fixed capacitance 

 d k dxp xp C.ndens .ndens pFnom

=
=0 10

   (5.34) 

and at fixed plate area 

 d k
d

dxp xp
pF r

.ndens ndens

mm

=
=

.
0

2

10 6

   (5.35) 

where 

 k xp.ndens = noise coefficient = 40x10-9 
 d10pF =  gap for 10 pF = 100 µm. 

These functions are plotted as Fig. 5.18. Note that this gives noise 
density as a function of gap, this must be multiplied by the square root 
of the bandwidth to get actual noise in nm. 
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It is worth noting that the noise coefficient is approximately that 
expected from electron shot noise at the current levels being measured. 

Fig. 5.18. Noise density v. gap 
 Constant r  and constant C 
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Capacitance micrometry could be improved by making the charge on 
the electron somewhat smaller! 

USING SENSORS 
So far in this section we have considered the nature of capacitance 
sensors and some of the problems that could be encountered when 
using them, concentrating on the ‘short range’ mode of operation 
where the displacement to be measured varies the capacitor gap. What 
other things must be taken into consideration? 

Choosing a Sensor  
Queensgate’s standard ‘NanoSensor’ comes as a pair of plates denoted 
‘Target’ and ‘Probe’ intended for use with the NPS range of sensor 
electronics and controllers. The probe has a circular active electrode of 
radius 6 mm and is surrounded with a guard ring at a gap of around 
25 µm. The target has a larger radius than the probe and together the 
probe and target form the configuration shown in Fig. 5.7a. The plate 
surfaces are flat to a few micrometres. 

The controllers can be set up to work with a range of nominal gaps, but 
100 µm and 500 µm are standard. This gives nominal capacitances of 
10 pF and 2 pF. As standard the measurement range is the same as the 
nominal gap going from 0.5d0 to 1.5d0, but again other ranges can be set 
up. 

Range, linearity and noise 

One should operate with the largest nominal gap consistent with the 
resolution required. The resolution will in general be dominated by the 
noise, so for example, if a noise density of around 0.1 nm·Hz-1/2 is 
acceptable, one could work at 500 µm nominal gap giving a 500 µm 
measurement range with good immunity to tilt errors. The noise density 
of 0.1 nm·Hz-1/2 would give a true noise displacement of around 3.2 nm 
with a set bandwidth of 1 kHz. Of course the bandwidth can be chosen 
to suit requirements: if the displacement to be measured only varies 
slowly one can set a low bandwidth, say a few hertz and get very high 
resolution (good precision). If on the other hand the displacement 
varies rapidly, a high bandwidth must be set and the resolution will 
suffer. 

If it is necessary to measure with high precision over a short range, 
then work with the smallest gap consistent with the range and at the 
lowest bandwidth possible. The standard sensors will give around 
0.2 pm·Hz-1/2 with a nominal gap of 20 µm, so with a bandwidth of 10 Hz 
one could measure down to about 1% of a hydrogen atom radius! Of 
course to get good linearity one would have to ensure that the plates 



Chapter 6. Piezos 

70 

were mounted very parallel. Note that this example is entirely consistent 
with the NPS readout resolution of 1 part in 107. 

Mounting considerations  
When monitoring displacements over a long period of time, it is 
essential not to induce any stresses into the sensors when mounting 
them. These stresses will relieve over time and cause drift. Stresses can 
be minimised by using spring washers under screw heads ( do not over 
tighten!) or in some situations by using magnets to hold the sensors in 
place. Queensgate will be happy to advise on particular mounting 
requirements. 

The NPS range of controllers are designed to be immune to capacitance 
to ground and thus cable capacitance. It is, however, good practice to 
tie the cables down in such a way as to prevent excess cable motion 
and stress on the sensor heads. 

Environmental effects 
At the sort of resolutions that are within the capability of these 
sensors, vibration can be a dominant source of noise. In high precision 
applications it is essential to isolate the system being monitored from 
ground vibration and acoustic noise. Low frequency airborne noise 
from an air conditioning unit may not be audible but can seriously 
degrade performance. 

External electro-magnetic interference can also be a source of problems. 
Whereas Queensgate’s equipment meets the stringent requirements of 
the European directives on electro-magnetic compatibility, this still 
gives a lot of scope for measurement errors in the presence of high 
radiated fields (one must remember, we are dealing with just a few 
electrons sloshing around!). Cables etc. are well shielded to minimise 
this problem but it is prudent to keep the sensors away from potential 
field sources such as computer monitors or noisy electric motors.  

The sensors work by measuring the capacitance of the capacitor formed 
by the target and probe sensor plates. Unfortunately this capacitance 
depends not only on the plate area and gap but also on the relative 
permittivity , εr, of the air between the plates: a 1x10-6 change in the 
relative permittivity will cause an output equivalent to a 1x10-6 change 
in the nominal spacing. 

The value of εr depends on the partial pressures  of dry air, carbon 
dioxide and water vapour in the atmosphere. A useful equation is  

( )εr T
p

T
p

T T
p− × = + + +





1 10
1553 9 26636 1295 2

1
57486

1 2 3
. . .   (5.36) 

where 

During the course of 
development of the NPS range of 
controllers, we encountered an 
unexpected source of 
interference. After a lot of 
messing around, it was traced to 
the cooling fan we were using. 
The supplier seemed 
unconcerned, so we changed our 
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T = absolute temperature (K)   (300 K) 
p

1 = partial pressure of CO2 -free dry air (kPa) (101.3 kPa) 

p
2 = partial pressure of CO2 (kPa)  (0.035 kPa)) 

p
3 = partial pressure of water vapour (kPa)   

                 (3.567 kPa at 100 %RH and 300 K) 

This is derived from the work of L.Essen and K.D.Froome (1951) on the 
refractive index of air. 

These effects are in the order of a few x10-6 for typical atmospheric 
variations. Humidity, however, has a much greater effect than would be 
expected. From equation 5.36 the variation expected is about 3x10-6 per 
one percent change in relative humidity (change of 0.036 7 kPa) or 
1.5 nm·%-1. In practice larger changes than this are observed due to 
adsorption of water vapour onto the plates. Please contact Queensgate 
if this is likely to be a problem. 

Making your own sensor 
Queensgate’s standard NanoSensors are suitable for a wide variety of 
applications, but it is sometimes necessary to customise designs for a 
particular use. Often this is quite straightforward: after all a capacitance 
sensor is just two conducting plates! Queensgate will be happy to 
advise on sensor design or, of course, design a special. Key points to 
watch are: 

1. use the maximum plate area possible; 

2. make the plates out of a chemically inert conductor; 

3. decide on the required noise density and use the maximum nominal 
gap consistent with achieving it; 

4. use a guard ring on the probe electrode; 

5. ensure the plates can be mounted without stressing themselves or 
the device they are to be mounted on; 

6. ensure that the plates can be mounted parallel and that they are not 
bent; 

7. shield the sensors from electro-magnetic fields; 

8. isolate the system from mechanical and acoustic vibration. 
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APPENDIX 

General capacitance determination 
Laplace's equation and other hard sums. 

In principle the capacitance of any configuration of electrodes can be 
determined by solving Laplace's equation 

 ∇ =2 0V      (5.37) 

for the configuration involved. V is the potential at any point in the 
region of the conductors. Once V as a function of position is 
determined, the surface charge density on an electrode is given by 

 σ ε ε
∂
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= −
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    (5.38) 

where z is the dimension perpendicular to the electrode surface. Once 
the surface charge density is known, it can be integrated over the 
surface to give the charge 

 Q A
A

= ∫σd      (5.39). 

Knowing the charge and the voltage difference between the electrode 
in question and the other electrode to which the capacitance is to be 
determined, the capacitance is then simply given by equation 5.1. If all 
this sounds rather difficult, that is because it is: in fact it is impossible 
to solve analytically for most configurations one is interested in! 

Things get a bit easier for circular plate configurations where the 
potential V does not depend on the azimuth angle φ. The Laplace 
equation can then be written in cylindrical polar coordinates 

 
∂
∂

∂
∂

∂
∂

2

2

2

2

1
0

V
r r

V
r

V
z

+ + =    (5.40) 

which can be solved by using separation of variables and conformal 
transformations and applying the boundary conditions dependent on 
the capacitor geometry. Heerens and Vermeulen (1975) have done some 
splendid work on this, applied to guard ring configurations.  

A more practical approach these days is to let the computer do the 
work. Equations 5.37 to 5.39 can be solved for any geometry using finite 
element analysis  techniques. This approach is adopted by Queensgate 
for the analysis of difficult configurations. 
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Alternatively one can get a good idea of the capacitance of most 
arrangements by integrating the capacitance of infinitesimally small 
'perfect' capacitors over the area of the electrodes, i.e. 

 C
A
dr

A

= ∫ε ε0

d
     (5.41). 

This cannot be used to assess edge effects but is useful for analysing 
gross defects like tilt and bending. 

Expressions for the effect of tilt 
Expressions have been derived for the C term of equation 5.13 with 
respect to tilt angle θ by Heerens and Vermeulen (1975) using solutions 
to Laplace’s equation; Harb et al. (1995) by analytical integration of 
equation 5.41 and Hicks T.R. (1995) by numerical integration of 
equation 5.41. The three expressions as presented are different but all 
give the same answers to a few parts per million. Zhao, Wilkening, 
Marth and Horn (1994) quote a formula that appears to be an 
integration of equation 5.41 but it is wrong, giving imaginary answers. 
The error seems to be typographical: a cosine where there should be a 
sine and a missing factor of two. Making these ‘corrections’ their result 
becomes identical to that of Harb et al. (1995). 
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  (5.42). 

Harb et al. 
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where 
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Hicks T.R. 

 C
r x

d x
xr

i

r

r

i

i
=

−
+−∫2 0

2 2

ε ε
θsin

d    (5.45). 



Chapter 6. Piezos 

74 

It will be noted that if θ is small then equations 5.42 and 5.43 are 
identical. 
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CHAPTER 6. PIEZOS 

It has been known for a long time that certain naturally occurring 
minerals, for example quartz, will produce a voltage if they are subjected 
to stress. It has also been known that the same minerals will change 
dimension if an electric field is applied to them. This class of behaviour 
is known as the piezoelectric effect and is very useful for producing 
small displacements.  
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SOME PROPERTIES OF PIEZO MATERIALS 
The piezoelectric effect is small in naturally occurring minerals, but 
present day ceramic technology has given us a range of man-made 
materials that do a lot better. Most of these are based on lead zirconate 
titanate and are generally known as PZT ceramics (from Pb, Zr, Ti). 
These can produce strains of up to 0.1% enabling motions in the order 
of 100 µm with a device 100 mm long. Strictly speaking, these are 
ferroelectric materials and have to be polarised before they function. 
This is done by subjecting the material to a high field, usually at high 
temperature.  

Actuators made using piezoelectric materials (piezo actuators for short) 
have a number of advantages over other forms of actuator: 

• the motion is smooth and continuous - no stick-slip (the expansion 
is an atomic process). In practice the smallest step size is limited by 
the noise level of the controller.  

• Piezo actuators are very stiff: practical actuators have over 20 % of 
the stiffness as the equivalent made out of solid stainless steel. 
They can thus generate a lot of force. 

• Piezoelectric ceramic responds quickly to step inputs. In practice the 
response is limited by the current rating of the controller. 
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• They have low power dissipation, especially when static. Typical 
power dissipation: moving, a few milliwatts;  static, a few 
microwatts. 

Piezo actuators have their problems too: 

• they are notorious for being nonlinear and suffering large hysteresis 
and long term drift.  

• High strain materials have a low Curie temperature: the Curie 
temperature is the temperature at which polarisation is lost and the 
actuator ceases to function. 

• They are not very good at pulling (though they will do it) so require 
pre-loading. 

Of course the non-linear and hysteretic behaviour can be overcome if 
the actuator is used in a closed loop system with a NanoSensor 
providing feedback, but it is instructive to look at the open loop 
properties. 

Large field properties 
These are best discussed with reference to the ‘butterfly’ diagram of 
Fig. 6.1 which shows a plot of extension v. voltage over a large range. 

1

2

3

4

5

+V-V

+d

 

Starting with un-poled material at the origin of the diagram, as the 
voltage is increased, the material will start to pole and expand, following 
path 1. It will eventually reach a saturation extension at high positive 
voltage. If then the voltage is decreased, the extension will follow path 
2 down to some negative voltage where the original polarisation will be 

Fig. 6.1. The butterfly diagram 
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lost and the material will re-polarise in the opposite direction. It will then 
expand again as the voltage becomes more negative, following path 3, 
again to a saturation point. Reversing the voltage again makes the 
extension follow path 4 back to a positive voltage that polarises the 
material in the original direction again. It then follows path 5 back up to 
the original saturation point from where it would follow path 2 again. 
This can hardly be called linear behaviour! 

Low field properties  
In practice piezo actuators are used over a smaller voltage range than 
required to produce Fig. 6.1 (especially in the negative direction) and 
one starts with poled material. The extension v. voltage curve is more 
like Fig. 6.2. 

1
3

2

+V

+d

 

Starting now with a poled actuator with zero volts applied, the rather 
indeterminate path 1 will be followed as the voltage is increased. When 
the voltage is reversed, path 2 will be followed. Assuming that the 
voltage is not taken negative enough to de-pole the material, path 3 will 
be followed when the voltage is taken more positive again. If the 
voltage is cycled between two fixed levels, the extension will follow the 
closed loop defined by paths 2 and 3. 

Hysteresis 

As can be seen from Fig. 6.2, there is a large hysteresis. This is defined 
as the maximum difference between the upward and downward paths 
when the actuator is cycled repeatedly over its full range, expressed as 

Fig. 6.2. Normal operating voltage 
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a percentage of the full range. Values of 20% are not uncommon. See 
Chapter 2, Accuracy, Trueness and Precision, Position Reproducibility 
for further discussion of hysteresis. 

Linearity 

Linearity can not be defined for a piezo in the same way as it can for, 
say, a sensor as the large hysteresis dominates: the peak to peak 
deviation from the straight line fit would measure hysteresis and not 
non-linearity. A somewhat different approach is required. 

Fig. 6.3 shows another hysteresis loop. If the actuator travels the large 
loop represented by points A and E, it can be said to have a scale factor 
defined by the line AE. If now a smaller loop were traversed, 
represented by points A and D, the scale factor would be less, 
represented by the line AD. The return paths for this and other smaller 
loops A-C, A-B are not shown for clarity. As can be seen, as the loops 
get smaller, so the scale factor reduces. 

A

B

C

D

E

F

+V

+d

 

This effect does not just happen when one starts from the same point 
A: smaller loop amplitudes give lower scale factors wherever one starts 
from. The piezo non-linearity thus manifests itself as a variation of the 
scale factor over the range for cyclic applied voltages. The small signal 
scale factor can be one third to one half of the large signal. 

Creep 

Looking again at Fig. 6.3, if one were to follow the cycle defined by 
points A and C and then stop at point C, the extension would ‘creep’ 

Fig.6.3. Piezo non-linearity 
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up to point F somewhere close to the line for the maximum loop. This 
can take several tens of minutes. It could thus be said that the real dc 
scale factor, allowing the piezo to creep to its final extension, is 
approximately constant over the range. Once at F, if the cycle A-C was 
resumed using the same limit voltages as originally, the first half-cycle 
(or maybe one and a half cycles) would take the extension from F to A 
and then the A-C loop would be followed again. Piezos are weird 
devices! 

PRACTICAL ACTUATORS 

Construction 
Quite high electric fields are required to get the materials to expand, so 
piezo actuators are made up of thin ceramic elements interleaved with 
conducting electrodes: see Fig. 6.4. The ceramic elements are 
mechanically in series but electrically in parallel, this enables full 
extension to be obtained with as little as 150 V or even 60 V with some 
devices. 

Pre-load 

Piezo materials are very good at pushing but not too good at pulling. 
Also they are very strong in compression but rather weak in tension. 
They will contract when a negative voltage is applied (as shown in the 
preceding diagrams) and can indeed generate some force while doing 
so, but there is a danger of breakage. For this reason pre-loading is a 
good idea. 

Pre-loading consists of applying a constant compressive force to the 
stack of elements using a spring assembly. This keeps the ceramic 
elements under compression even when the actuator is pulling on a 
load, as long as the required pull force is less than the pre-load. Pre-
loads of a few hundred newtons are not uncommon. 

Queensgate’s range of piezo actuators are constructed from stacks of 
PZT ceramic elements housed in a cylindrical steel shell containing the 
pre-load springs. Drilled and tapped steel end pieces on the stack 
enable easy mechanical interfacing. 

Mounting 

Piezo materials contract in the radial direction as they expand in the axial 
direction. Also the axial expansion may not be uniform over the area of 
the elements due to material composition and poling inhomogeneity. 
These effects conspire to make the ends of the stack tilt and twist in 
unexpected directions with respect to each other as the actuator 
expands, in fact on the nanometre scale they tend to resemble 

Ceramic elements

Electrical connections

 
Fig. 6.4. A section of a 
piezoelectric actuator 

load

Mounting springs

translator

Plane/Ball
contact

 

Fig. 6.5. Ball contact 

Fig. 6.5 shows the actuator mounted 
vertically but it does not have to be. 
This is just convenient to illustrate the 
effect of a gravitational load and 
also the diagram fits in the margin 
better.  
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piezoelectric corkscrews. These nasty effects can be decoupled from 
the actuator end pieces using flexure mechanisms (see Chapter 7 
NanoMechanisms) but are present in open-loop actuators. The best 
way to mount a actuator is thus to fix it at one end and get it to apply 
force to the load via a ball on the other, see Fig. 6.5. In this way lateral 
or angular motions of the end are decoupled from the load. 

If the actuator must be fixed at both ends, then take care not to exceed 
angular or radial load specifications, especially while installing the 
actuator. 

Static performance 
Piezo actuators can develop a large amount of push force (100’s or 
1000’s of newtons) but they are not infinitely stiff. This can affect the 
amount of motion one actually ends up with. 

Constant load 

Take an example of a actuator capable of moving 15 µm with no load 
and having a stiffness of 50 N·µm-1. If a weight of  10 kg is applied, say 
using the configuration of Fig. 6.5 with weak mounting springs, the 
actuator will be squeezed by about 2 µm: 10 kg weight is about 100 N. If 
now the voltage for full range is applied to the actuator, it will still 
expand by 15 µm, but from its shifted start point. A constant load will 
not affect the range. In this example it is assumed that the mounting 
spring force does not vary over the 15 µm range. Of course one must 
not exceed the maximum load of the device: too much compressive force 
will de-pole the material (before it crumbles). 

Spring load 

Consider now the case of Fig. 6.5 but with strong mounting springs. As 
the actuator expands, the force on it due to the springs will increase. 
This increase in force reacts with the stiffness of the actuator to push it 
back a bit so the total range for a given applied voltage is reduced. If 
the actuator has a stiffness of  k x.trans and the springs have a total 
stiffness of k x.spring, then the resultant extension dx is given by 

 d
k

k k
dx

x

x x
x=

+
.

. .
.max

trans

trans spring

   (6.1) 

where dx.max is the no-load extension of the actuator. Obviously some 
potential range will be lost because of the actuators internal pre-load 
springs, but this is taken into account when the maximum range of the 
actuator is specified. 
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Dynamic Performance 

Resonance 

The stiffness of the actuator also affects the dynamic performance 
when trying to move a mass. The stiffness and the mass combine to 
form a resonant system with natural frequency 

 f
k
m

x
0

1
2

=
π

.trans

load

    (6.2). 

Our example above with a 10 kg load would thus resonate at about 
350 Hz, so it would not respond well to frequencies higher than this: a 
stiffer actuator would be required to move faster. The no-load resonant 
frequency of the actuator can be tens of  kilohertz. In practice though it 
is often the drive amplifier characteristics that limit the speed, read on. 

Slew Rate 

As will have been noticed, the construction of a piezo actuator is very 
similar to a ceramic capacitor, in fact some actuators are manufactured 
using ceramic capacitor fabrication techniques. They are capacitors 
and quite large ones too: the ceramic properties that enable high strains 
to be developed also give the material a high dielectric constant. 
Capacitor values of a half to a few microfarads can be expected. The 
amplifier driving the piezo will have a limited current output capability 
and this limits the rate of change of voltage that can be developed 
across the piezo. If the amplifier drive current is Idrive, then 

 
d

d
drive drive

pzt

V
t

I
C

=      (6.3) 

where Cpzt is the actuator capacitance. If Spzt is the piezo voltage 
coefficient ( µm·V-1 ) then the maximum extension rate is  

 u S
I

Cx.max
.max= pzt

drive

pzt

    (6.4). 

Velocities of 5 µm·ms -1 are typical. The limits this places on the 
maximum sine wave amplitude that can be handled have been discussed 
in Chapter 3, Servo Control, Response Curves and Settling Time 
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Power handling 

Perfect capacitors pass alternating current without any power 
dissipation: the current is always 90º out of phase with the voltage so 
the IV product integrates to zero in a cycle. However in the output 
stages of the drive amplifier, the current and voltage are definitely not  
90º  out of phase and there is power dissipation there. Returning to the 
piezos: piezos are capacitors but they are not perfect capacitors. If the 
piezo is driven with a sine wave of peak to peak amplitude Vdrive at a 
frequency f , there will be a dissipation given by 

 P
f V C

pzt
drive pzt=

π δ. . . .tan2

4
   (6.5) 

where tan(δ) is the dissipation factor for the material and Cpzt is the 
capacitance of the piezo. 

A typical value for tan(δ) would be 0.02, so our example of a 1 µF 
actuator with a 10 kg load and peak to peak drive of 150 V would 
dissipate about a quarter of a watt at the resonant frequency of 360 Hz. 
This would be within the safe operating power for the actuator, but if 
the 10 kg load were removed, the possible operating frequency could 
go up to several kilohertz. Dissipation could then be a few watts which 
would cause over-heating and de-poling of the piezo material. 

Power dissipation in the drive amplifier can be much higher than in the 
actuator 

 P C V V famp pzt drive= . . .max    (6.6) 

where Vmax is the maximum output capability of the amplifier (peak to 
peak). Our example at 360 Hz would give a drive amplifier dissipation of 
around 8 W which must be allowed for in drive amplifier construction. 
As you can see, one needs a rather beefy amplifier to drive actuators 
fast!  

As well as power dissipation in the amplifier one must consider its 
maximum current drive capability. The peak output current depends on 
the drive waveform 

 I C V fdrive.avg pzt drive= . .     (6.7) 

 I C V fdrive.pk.sine pzt drive= π . . .    (6.8) 

 I C V fdrive.pk.triangle pzt drive= 2. . .    (6.9). 

The average current is independent of waveform. 
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Noise and Resolution 

The resolution of piezo actuators is governed by the noise on the drive 
amplifier rather than any property of the piezo: there is no intrinsic dead 
band in the material. The rms drive amplifier noise will be generally less 
than  3 µV·Hz-1/2 giving a noise displacement of  0.4 pm·Hz-1/2. This is 
usually adequate for most applications.
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CHAPTER 7. NANOMETRE PRECISION MECHANISMS 

Theory meets practice 

In this chapter we bring together the concepts of the previous chapters 
in order to describe real nanometre precision mechanisms. We discuss 
how they work, how they are specified, how they are tested and give 
some hints for getting the best results from them. 
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DESIGN PHILOSOPHY  
Piezo-electric devices have the potential to move stages with the 
resolution required for nanometre precision mechanisms. However, as 
we have seen in the last chapter, an external sensor is required to 
control their position because piezo-electric devices are non-linear and 
exhibit hysteresis. The capacitance micrometer is ideally suited to this 
task, being small and simple with an intrinsic resolution capability 
which is effectively infinite. The motion measured by the sensor is fed 
back to the controller which moves the stage to minimise the difference 
between the sensed motion and the command. This form of controller 
has been described extensively in Chapter 3, Servo Control. As was 
shown, the positioning precision in the metrology loop is mainly 
determined by the capabilities of sensor and controller. 

 

 

… Theory is when you understand 
everything but nothing works.  

… Practice is when you don’t 
understand anything but everything 
works. 

… When theory meets practice you 
don’t understand anything and 
nothing works.  

Of course, Queensgate uses the 
obvious alternative last line! 
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Guided motion 
As has been stated in Chapter 6, Piezos, piezo actuators behave more 
like nano-corkscrews. To achieve a pure single axis motion, flexure 
guiding mechanisms are used to constrain off-axis motions and 
combine piezo actuator and sensor together to form an integral stage 
system. Fig. 7.1 is a typical closed loop control block diagram of this 
kind of system. Flexures may be parallel spring strip designs for linear 
motion or cross springs for angular motion (see Smith and. Chetwynd, 
1992 for a discussion of these and their variants). 

 

 

In principle flexure mechanisms  can provide very pure motion, but to do 
this they must be carefully designed and manufactured. The aim is to 
get low stiffness in the direction of the required motion and high 
stiffness in the other directions without introducing undue stresses and 
friction. Finite Element Analysis  (FEA) is able to predict local and 
global distortions enabling the design to be optimised by decoupling 
the forces or making the inevitable distortions cancel each other. 
Friction must be avoided as it will introduce hysteresis , especially if it 
appears between the sensor and the point on the stage where the load 
is mounted. Inevitably there will be some parasitic motion, but careful 
manufacture ensures that this is repeatable and characterisable and 
therefore correctable: see Using NanoMechanisms. 

Mechanical amplification 
Piezos are great for producing small motions but this can also be a 
problem as their range is limited: it requires an actuator 100 mm long to 
achieve a range of 100 µm. This can be overcome by using a shorter 
actuator and a mechanical lever arrangement to amplify the motion. 
Here the piezo’s high pushing force and stiffness properties are being 

PZTHV Driver

Capacitance
gauge

Host Computer

Capacitance Sensor

Controller Stage

Command

Position

Flexure

 
Fig. 7.1 Single axis stage control loop 
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used to provide a longer extension from a more compact device. The 
resultant stiffness of the piezo actuator will be reduced to 

 k
k

Geff
pzt

mech

= 2      (7.1) 

where k pzt is the stiffness of piezo stack itself and Gmech is the 
mechanical amplification. Amplification factors of five or so are 
reasonable while still retaining useful stiffness. Higher amplification 
factors are possible but the stiffness, and thus the resonant frequency, 
becomes very low.  Often the lever arrangement is fabricated as part of 
the guiding flexure mechanism.  

Metrology frame and kinematic mounting 
Motion must be measured relative to something and in a nanometre 
precision mechanism it is the mechanical frame assembly holding the 
‘stationary’ plate of the capacitance sensors. If this moves, errors will 
be introduced into the motion. Kinematic or isostatic mounting of this 
metrology frame onto the user’s system minimises induced stresses to 
and from the user’s system.  

Kinematic design is discussed extensively by Smith and Chetwynd  
(1992). Basically kinematics is the study of the geometry ( direction )  of 
motion, to be contrasted with kinetics, which studies the forces 
involved. Kinematic locations use one ( and only one ) point contact to 
constrain each degree of freedom, thus six ( and only six ) point 
contacts are required to locate a stage ( x, y, z, γ, θ, φ ). A common way 
of doing this is to use three balls rigidly attached to the metrology 
frame resting in three vee grooves in the user’s mounting base, see 
Fig. 7.2a. Each ball has two contact points with the grooves, giving the 
required six in all. Gravity keeps the balls and grooves in contact. It can 
be seen from the arrangement that if the metrology frame were to 
expand with respect  to the user’s system, the balls could slide in the 
grooves and no forces would be transmitted. 

The above kinematic mounting has a few problems:  

1. it requires the user to machine grooves in the system baseplate. 
This may not be convenient. 

2. It utilises gravity to hold things together. This could be replaced by 
a spring, but that entails yet another fixing to the user’s system and 
would make installation difficult.  

3. It relies on sliding contacts to decouple thermal expansion effects. 
These are difficult to predict and friction would induce stress in the 
metrology frame and the baseplate. 

 

Fixing holes Spring strips

Cut

 

a) 

Balls in vee
grooves

 

b) 
 
Fig. 7.2  a) Kinematic location. 
              b) Isostatic 
implementation 
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These problems can be solved by using spring strip arrangements in 
place of the ball in vee groove: see Fig. 7.2b. The spring strips are 
fashioned into the metrology frame of the stage using a pattern of thin 
cuts. This scheme allows mounting to the user’s system baseplate with 
three screws through the holes provided. This is about as convenient 
as one can get for a precision mechanism and does not rely on gravity 
for constraint. It will be noticed that this mounting is not strictly 
kinematic as the stage is somewhat over constrained: a kinematic 
mounting point constrains motion in one direction while allowing it in 
all others, a spring strip allows motion in one direction while 
constraining it in others. Stresses due to thermal expansion are, 
however, properly decoupled if the allowed motion axes of each strip 
meet at the same point. This point then becomes the origin from which 
motions due to thermal expansion can be calculated and is conveniently 
arranged to be at the centre of the moving part of the stage. 

This form of mounting is generally known as isostatic, which strictly 
means ‘floating’.  

SPECIFICATIONS AND PERFORMANCE MEASUREMENT 
The truth is out there … 

The perfect NanoMechanism has pure axial motion, high structural and 
thermal stability, high resolution, high resonant frequency, perfect step 
response, absolutely linear output and orthogonal motions for multi-
axis systems. So what about the real world? 

The performance of a stage can be summed up by its accuracy. So we 
just need one number to quantify accuracy, then throw in  a few other 
details like settling time, weight and size and we have a specification 
sheet. Simple. Simple, yes, but not very helpful. It is far better to break 
down the accuracy into some of its component parts and specify these 
to enable the user to determine in detail whether the stage is suitable for 
the application. For example it may be very important for one 
application that the linearity be excellent but noise may not matter; 
another may require low noise, and so on. Also the user may be able to 
correct for some errors such as non-linearity and parasitic rotations if 
they are quantified. For these reasons the components that make up 
accuracy are specified, rather than the overall figure. Table 7.1 on page 
85 shows a sample specification sheet for a X-Y stage.  

We will now detail each of the specification parameters in turn. An 
entry in the ‘Typical’ column, or a value described as typical in the 
comments column, indicates a value commonly achieved but not 
guaranteed. Entries in the ‘Maximum’ or ‘Minimum’ columns are 
guaranteed. 
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Where applicable, parameters are measured for each axis of the stage. 
The procedures we use to measure these parameters are also outlined 
to help understand what they mean. 
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TYPICAL 100µm XY STAGE 
Parameter Symbol Value Units Comments  

STATIC  
  Minimum Typical Maximum   
Material  Super Invar (Bright nickel plated)    
Size  100 x 100 x 23  mm 40 mm 

dia.Aperture 
Material thermal 
expansion coefficient 

αmech  0.3  ppm·K-1  

Range  X 
   Y 

dx.max 
dy.max 

±50 
±50 

  µm 
µm 

Note 2 

Scale factor X 
  Y 

bx1 
by1 

 1 
1 

 µm Command units 
are micrometres 

Scale factor X 
error, position Y 

δbx1 
δby1 

  0.1 
0.1 

% 
% 

 

Static stiffness X 
  Y 

kx 
ky 

50   N·µm-1 Note 1 

Allowable load m load  0  0.5 kg Note 1 
DYNAMIC  

  Fast Medium Slow   
Effective bandwidth X 
  Y 

Bpx 
Bpy 

800 100 
100 

10 
10 

Hz 
Hz 

3dB. Typical. 
Note 2 

Lowest resonant 
frequency 

0 g load 
100 g load 
500 g load 

 
f0.0g 
f0.100g 
f0.500g 

 
1000 
500 
100 

 
Hz 
Hz 
Hz 

 
Note 2 

Small signal  X 
settling time Y 

txs.s 
tys.s 

0.2 
0.2 

1.6 
1.6 

16 
16 

ms 
ms 

To ±2%. Typical. 
Note 2 

Large signal  X 
settling time Y 

txs.l 
tys.l 

16 
16 

18 
18 

32 
32 

ms 
ms 

To ±2%. Typical. 
Note 2 

Slew rate  X 
  Y 

uxp .max 
uyp .max 

5 
5 

5 
5 

5 
5 

µm.ms-1 
µm.ms-1 

Minimum. 
Note 2 

Position noise X 
  Y 

δxp.n 
δyp.n 

0.11 
0.11 

0.04 
0.04 

0.013 
0.013 

nm 
nm 

rms Maximum. 
Note 2 

MECHANICAL ERROR TERMS 
  Minimum Typical Maximum   
Hysteresis 
 X 
  Y 

δxp.hyst 
δyp.hyst 

 0.0005 
0.0005 

0.001 
0.001 

% 
% 

peak to peak. 
Note 2 

Non-linearity  X 
  Y 

δxp.lin 
δyp.lin 

 0.02 
0.02 

0.05 
0.05 

% 
% 

peak. 
Note 2 

Yaw  X 
  Y 

δφx 

δφy 
 10 

10 
20 
20 

µrad 
µrad 

Note 2. Over full 
range 

Pitch  X 
  Y 

δθx 
δγy 

 10 
10 

20 
20 

µrad 
µrad 

Note 2. Over full 
range 

Roll  X 
  Y 

δγx 
δθy 

 10 
10 

20 
20 

µrad 
µrad 

Note 2. Over full 
range. 

Orthogonality error XY δφorth   2 mrad Note 2 
Notes:  1 Design value. Sample tested.  
  2 Measured on test for each unit. Values supplied to user. 
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Static Characteristics 
Or at least slowly moving. 

Material 

This is the stuff of which most of the stage is made: the properties of 
various materials have been discussed in Chapter 4, Materials. 

The materials thermal expansion coefficient will govern parasitic 
motions due to temperature changes and its density will influence the 
mass of the moving part of the stage and thus its resonant frequency. 
Its Young’s modulus will affect the hinge design. Thermal expansion 
needs to be considered by the user (see Material thermal expansion 
coefficient below) but the other effects are reflected in the stiffness, 
load and resonant frequency specifications. 

Size 

The overall outer dimensions of the stage. Particular details, like an 
aperture in the moving part of the stage, are given in the Comments 
column. The dimensions are part of the design and are not measured on 
all units. 

Material thermal expansion coefficient 

This is the number quoted by our material suppliers for the material of 
which the stage is made. It is not verified directly by test.  

The materials thermal expansion coefficient will determine the 
movement of a particular point on the stage with respect to temperature 
and its thermal conductivity will determine how fast it will reach 
equilibrium after a temperature change. Motion due to temperature 
changes will be along a line  between the point in question on the stage 
and the isostatic equilibrium point, which is arranged to be at the centre 
of the stage and will be greatest the further one is away from the 
equilibrium point (see metrology frame and kinematic mounting 
above). There is no motion at the equilibrium point. In general for high 
temperature stability choose a material with low thermal expansion 
coefficient, but be careful: sometimes it is better to have the thermal 
properties of the stage material the same as the rest of system in which 
the stage is being used, see the atomic force microscope example in 
Chapter 4. Table 7.1. Sample spec. sheet  
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Range 

This is the maximum closed-loop displacement capability of the stage. 
The open-loop capability will be somewhat higher as some headroom 
must be left to deal with the effects of piezo hysteresis and thermal drift. 
Correct closed loop operation is indicated by the controller’s ‘ready’ 
flag being true. This is used to measure the closed-loop range. 

1. Starting from zero, scan the command in a negative direction in 
steps of 0.5 µm. Stop when the ‘ready’ flag remains false after a 
step. Note that it will flicker false while the stage is moving: ignore 
this. The command applied before the one that caused the false 
indication is the maximum negative extent of the range. 

2. Repeat the process starting from zero and scanning in a positive 
direction. This gives the maximum positive extent of the range. 

Scale factor 

The scale factor is the b1 mapping coefficient discussed in Chapter 2, 
Accuracy, Trueness and Precision, Position linearity and mapping. As 
the command units are micrometres, b1 should be unity: that is if you 
ask the stage to move one micrometre, it should move one micrometre. 

The scale factor is set and verified using a laser interferometer as a 
measure of true position, see the Appendix to this chapter for a 
description of the interferometer and scale factor setting. Once set, the 
scale factor is verified as follows: 

1. Mount the interferometer  retro-reflector (M2) on the stage, on the 
axis being verified.  

2. Set the command to zero and zero the interferometer readout. 

3. Starting from the negative end of the range, step the stage to the 
positive end of the range (‘up’) and then back down to the negative 
end (‘down’), taking around 100 steps in each direction and 
recording the interferometer reading at each step. 

4. Each command step now has two position points: an up and a 
down. Generate an average data set by averaging the two points at 
each command. Fit a straight line to the average interferometer 
reading (xp) v. command (xc) and derive the slope and error on the 
slope. 

The slope found at step 4 above is the scale factor. It should be unity 
within the error also determined. The scale factor verification is carried 
out on all axes of the stage on test. 
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Scale factor error 

This is a ‘root of the sum of the squares’ (RSS) combination of the 
accuracy of the interferometer measurement system referred to the 
definition of the metre, and the error on the slope determined in Scale 
factor, step 4 above 

 δ δ δb b xx x m1 1
2= +. .slope interf

2    (7.2). 

A similar equation exists for the other axes.  

Static stiffness 

This is the ratio of an external force applied to the axis in question, to 
the displacement that force creates, with the control loop switched off. 
It is relevant only for computing the resonant frequency and change in 
range if the stage is used to push against a spring force: see Chapter 6, 
Piezos, Static performance. It should be noted that the closed-loop 
stiffness is effectively infinite for slowly applied external forces. 

The stiffness is not measured directly on every unit but can be inferred 
as being in specification if the lowest resonant frequency is correct as 
we have 

 f
k

m m
x

0

1
2

=
+π load stage

   (7.3). 

Allowable load 

This is the largest mass that can be attached to the stage and have it 
still control reliably at the slowest speed setting.  The weight of this 
mass will not cause damage.  

This parameter is sample tested by ensuring that a stage with the 
specified maximum load applied controls with the ‘slow’ bandwidth set: 
see Effective bandwidth below. 

Dynamic characteristics 
Aside from the ‘static’ accuracy of motion, the dynamic performance of 
the system is also important because speed is critical to many 
applications. Ideally there would be no phase lag between command 
and position and the mechanism would respond perfectly to a step 
input i.e. zero rise time, over shoot, and settle time.  

The system response depends on the resonant frequency, the damping 
factor and the PID parameters set. See in Chapter 3, Servo Control for a 
full discussion of this. 
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Effective bandwidth 

Three sets of PID parameters are supplied with each stage: ‘fast’, 
‘medium’ and ‘slow’. The fast set will give the shortest settling time 
possible, with a load mass of 0 to 20 g. The medium set will give 
specified operation with loads up to 100 g. The slow set will give stable 
operation with all specified loads. Note that the PID parameters can be 
adjusted by the user for a specific set-up: one is not limited to fast, 
medium or slow! 

The effective bandwidth is defined as the frequency at which the 
displacement of the stage is 3 dB down on the displacement at dc for a 
sinusoidaly varying command. The sensor circuitry built into the 
controller always works at its maximum bandwidth and this measured 
position information is available to the user. It is thus convenient to use 
the system’s own sensors to measure the time and frequency response 
characteristics using the ‘snapshot’ operation mode of the controller. 
This mode can be set to apply a command impulse and record in the 
controllers own memory up to about 0.65 s of measured position data, 
sampling every 40 µs. The data can then be down-loaded to the host 
computer and  Fourier transformed to get the frequency response. 

1. Load the PID parameters for the speed of interest. 

2. Command an impulse response and down-load the response data. 

3. Perform a Fourier transform on the data to get the frequency 
response plot (Excel or MatLab can do this). 

4. Read off the frequency at which the response is 3 dB down on that 
at dc and compare it with the specification. 

Fig. 7.3 shows a typical pair of response curves (medium PID) with a 
3 dB response at 190Hz. 
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Fig.7.3. Impulse and frequency response curves. (NPS-Z-15B, closed loop, medium 
PID) 
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Lowest Resonant frequency 

For a linear, second-order, damping-free mechanical system, the 
resonant frequency is determined by system stiffness and mass. In an 
optimally designed mechanism, the stiffness is usually dominated by 
the stiffness of piezo stacks in its translation axis see Chapter 6, Piezos: 
Dynamic performance. For a stage with motion amplification, the 
effective stiffness of the piezo actuator will be reduced as shown by 
equation 7.1. 

Reducing the mass will increase the system resonant frequency. 
However, as the mass of the platform decreases the stage performance 
becomes more sensitive to the influence of the load mass, i.e. the 
resonant frequency will drop down rapidly as the mass of the specimen 
increases.  

The easiest way to verify the lowest resonant frequency is to apply an 
impulse to the stage in open loop mode. The stage will then ring at its 
natural frequency. Again the controller snapshot mode is used. 

1. Attach the required test mass to the stage, set open loop mode and 
command an impulse response.  

2. Fourier transform the impulse response data. The lowest peak is the 
resonant frequency of interest. Fig. 7.4 shows a ringing response 
with a peak at approximately 2.2 kHz. 
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Fig. 7.4. Ringing response (NPS-Z-15B,  open loop) 
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Small signal settling time 

The settling time for a small signal is governed primarily by the servo 
loop response characteristics which in turn are set via the PID 
parameters. This is in contrast to the settling time for a large signal 
which will be dominated by the slew-rate. See Chapter 3, Servo Control 
for a discussion of small and large signals. In general 0.5 µm or less is a 
small signal. 

The measurement technique again uses the ‘snapshot’ mode except 
that a step command is used rather than an impulse as was used for 
bandwidth measurement.  

1. Attach a test mass to the stage and load the appropriate set of PID 
parameters. 

2. Command a snapshot with a 0.5 µm step or less. 

3. Plot the step response and read off the time taken for the measured 
position to get to and stay to within ±2 % of the final value.  

Fig. 7.5 shows typical small and large signal responses. 

Large signal settling time 

This measurement is the same as the small signal settling time, only a 
large step is commanded 

1. Attach a test mass to the stage and load the appropriate set of PID 
parameters. 

2. Command a snapshot with a step of 80 % of full range. 

3. Plot the step response and read off the time taken for the measured 
position to get to and stay within 2 % of the final value.  

Fig. 7.5 shows typical small and large signal responses. 
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Slew rate 

This is the slope of the linear section of the large signal response 
measured above: see Fig. 7.5. It depends on the current drive capability 
of the piezo drive amplifiers and the capacitance of the piezo actuators, 
though this must not be allowed to dominate. In practice the integrator 
slew rate is set to be a bit less than this and govern the slew rate. See 
Chapter 3, Servo Control for a full discussion. 

 

Position noise 

Again this uses the snapshot mode, this time with no command. 
Position noise in closed loop mode is dominated by the internal sensor 
noise, so that is measured. 

1. Freeze the controller output.  

2. Take a snapshot with no command. This gives measurement noise 
with a small contribution from the piezo drive amplifiers and external 
vibration. 

3. Compute the standard deviation of the measured position data set. 
This is the measurement noise, δxm.n over the full measurement 
bandwidth Bxm.  

4. Derive the position noise within the previously measured 
bandwidth: 
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Fig. 7.5. Typical small and large signal response plots. ( NPS-Z15-B, medium 
PID) 
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δ δx x
B

Bp m
xp

xm
.n .n=      (7.4). 

This is not exactly correct as it contains the piezo drive noise δxp.ndrive, 
which will be partially servoed out in closed loop mode. However that 
component is usually very small compared with measurement noise, 
except when the mechanical amplification is very large (>10). 

Mechanical error terms 

Hysteresis 

Motion along a measurement axis will be free of hysteresis as the 
capacitance sensors are intrinsically hysteresis free. Parasitic motions 
however by definition are not directly measurable by the sensors. They 
may therefore exhibit hysteresis if there is any friction in the system or 
if the motion axis is not co-linear with the measurement axis (cosine 
error). In the latter case the component of motion orthogonal to the 
measurement axis caused by the piezo will exhibit the hysteresis of the 
piezo. Obviously this must be minimised by design. 

In Chapter 6, Piezos, we showed typical piezo hysteresis loops where 
the difference between the ‘up’ and ‘down’ directions is very distinct. 
In a closed loop stage the difference is very small and indeed quite 
often masked by noise. Some smoothing is required to show up 
hysteresis rather than the noise. Hysteresis is measured using the data 
taken during  Scale factor verification on page 87. During that test the 
stage was scanned from the negative end of the range to the positive 
end and then from the positive end to the negative end. We will call 
these scans the ‘up’ and ‘down’ scans respectively. 

1. Generate a plot of hysteresis over the range by subtracting the 
‘down’ scan from the ‘up’ scan 
 
Hyst = .up .downx xp p−     (7.5) 

 
and express this as a percentage of the full scan range. 

2. Ideally this will just show noise about the X axis. Any hysteresis 
will show as a large scale structure in this line. Backlash would 
show as an overall shift up or down. 

3. Smooth the hysteresis curve to average out noise. 

4. Quote the hysteresis as the maximum distance of the smoothed 
curve from the X axis. 

This sounds rather complicated but Fig. 7.6 should help! 
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This shows a plot of up and down residuals to the straight line fit (it is 
easier to see the errors on residual plots rather than the actual scans) 
and the smoothed difference between the two, expressed as a 
percentage of the full range. This is the hysteresis curve and is 
arithmetically the same as equation 7.5. The maximum hysteresis is  just 
under 0.0025 % for this stage, which is a NPS-Z15-B. In this example 
there is a component that is constant over the range indicating some 
backlash (about 0.001 % or 0.15 nm) 

Non-linearity  

Non-linearities are caused by geometrical effects in the capacitance 
sensors, see Chapter 5, Capacitance sensors. As the system on test will 
have been linearised to fourth order during the calibration procedure, 
any remaining non-linearities are likely to be of higher order and again 
they will be small and perhaps masked by noise 

Again smoothing techniques must be used if we want to get a measure 
of non-linearity. The scan data used for Scale factor verification above 
is used. 

1. Generate a residual curve by subtracting the best fit straight line 
from the averaged data 
 

( )Re .savg = − +x b b xp c0 1     (7.6). 

 
Ideally this will just show noise around the X axis. Any large scale 
structure to the curve indicates non-linearity. 

2. Smooth the residual curve to average out noise. 
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Fig. 7.6 a) Residuals to ‘up’ and ‘down’ scans                              b) Smoothed difference, i.e. hysteresis 
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3. Quote the non-linearity as half the peak to peak value of this curve. 

Fig. 7.7 shows the idea. 

 

 

This shows the same plot of up and down residuals that was used for 
hysteresis determination. The linearity error plot is the smoothed 
average of these two, expressed as a percentage of the range, rather 
than the difference. This is arithmetically the same as equation 7.6. The 
non-linearity quoted is half the peak to peak value of this curve, or 
around 0.004 %. Looking at Fig. 7.7b, it would seem that a fifth order 
mapping polynomial would reduce the error still further without hitting 
the noise limit. See Improving performance later in this chapter. 

Roll, pitch and yaw 

All stages are designed to produce ‘pure’ motions, that is if an X-Y 
stage is commanded to move in X it will only move in X and not in Y, Z, 
γ, θ, φ as well. Unfortunately there will be manufacturing errors in the 
spring strip mechanisms that provide the guided motion: see Guided 
motion earlier in this chapter. These will cause unwanted translations 
and rotations. WARNING: Read the definitions of roll, pitch and yaw in 
Chapter 2 before attempting to understand these measurements! 
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Fig. 7.7 a) Residuals to ‘up’ and ‘down’ scans                              b) Smoothed average, i.e. linearity error plot 

Fig.7.8. X pitch and yaw;  
Y roll 
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Roll, pitch and yaw are minimised by design and are measured using a 
2D autocollimator and flat mirror mounted on the stage, see Figs. 7.8 
and 7.9. Fig. 7.8 is used to measure pitch and yaw for X and roll and 
pitch for Y. Fig 7.9 is used to measure pitch and yaw for Y and roll and 
yaw for X. Note that X yaw and Y pitch can be measured with either or 
both setups. For a single axis stage, ignore the references to Y.  

 

The autocollimator has an angular resolution of 0.1 µrad. 

For each set-up, command one axis to zero and scan the other over its 
full range. The change of angles as read by the autocollimator in the 
plane of the paper and at right angles to it, as the relevant axis is 
scanned, gives roll pitch and yaw information as shown in Table 7.2. 

Set-up Scan X Scan Y 
 In plane Out of plane In plane Out of plane 

Fig.7.8 X yaw, δφx X pitch, δθx Y pitch, δφy Y roll, δθy 
Fig.7.9 X yaw, δφx X roll, δγx Y pitch, δφy Y yaw, δγy 

 

Orthogonality and crosstalk 

Crosstalk is an unwanted motion along or about a given axis caused by 
a wanted motion in another. Roll pitch and yaw are examples of 
crosstalk, but here we are more interested in, say, unwanted x 
displacements produced by wanted y displacements. In this case the 
crosstalk is also known as ‘runout’. Crosstalk is mainly determined  by 
manufacturing tolerances. If the axes of the two pairs of sensors in the 
X-Y stage are not orthogonal, then a motion in X will produce a 

Autocollimator

X Axis

Mirror

Y

 

Autocollimator

Y Axis

Mirror

X

 

Fig.7.9. Y pitch and yaw;  
X roll 

Table 7.2. Roll, pitch and yaw determination 
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parasitic motion in Y and vice versa. The departure from orthogonality 
of the axes is expressed as an angular deviation from 90º (π/2 rad). 
Using modern manufacturing technology, the orthogonality of the 
sensor axes can be generally controlled to within 0.5 mrad which gives a 
crosstalk of 0.5 nm·µm-1 (i.e. 0.05%) in the X-Y plane.  

It is important not to confuse crosstalk produced by non-orthogonality 
with the effects of yaw. If one is concerned about a point away from the 
coordinate system origin (the centre of the moving part of the stage in 
an X-Y system), then yaw will cause an off-axis motion. Roll, pitch and 
yaw are considered to be rotations about the origin: crosstalk due to 
non-orthogonality of the axes causes an off-axis motion of a point at 
the origin. At the origin of an X-Y stage, there will be no off-axis 
motion due to yaw, to first order.  

Orthogonality is measured directly using the laser interferometer using 
the set-ups of Fig. 7.10 a and b. The stage is mounted on a precision 

table that can be rotated through 90º with an accuracy of 50 µrad. 

In these figures the laser, beamsplitter and stationary retro-reflector are 
contained in the box labeled ‘interferometer’. 

1. Considering Fig. 7.10a, mount the retro-reflector on the moving part 
of the stage with its apex at the origin. The effective measurement 
point of a laser interferometer is the retro-reflector apex. 
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Fig. 7.10 Orthogonality determination 
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2. Command the stage to zero in X and scan over the full range in Y 
recording any motion registered by the interferometer. If the Y axis 
of the stage is at right angles to the measurement laser beam, no 
motion will be recorded. It is unlikely to be exactly lined up so there 
will be a displacement. Calculate the misalignment angle 
 

φ1 =
d
d
x
y

      (7.7) 

 
where dx is the motion along the x axis produced by the Y motion 
dy. Remember to observe the sign of the motions. 

3. Turn the stage through 90º anti-clockwise and re-position the retro-
reflector to give the set-up of Fig. 7.10b. 

4. Command the stage to zero in Y and scan over the full range in X 
recording any motion registered by the interferometer. Calculate the 
misalignment angle 
 

φ2 =
d
d

y
x

      (7.8) 

 
where dy is the motion along the y axis produced by the X motion 
dx. Remember to observe the sign of the motions. 

5. If the axes are orthogonal, then the two angles measured above will 
be the same. The orthogonality is defined 
 
δφ φ φorth = −2 1      (7.9) 

 
and the actual angle in radians between the X and Y axes will be 
 

φ
π

δφXY = +
2 orth      (7.10). 

 

 

 

USING NANOMECHANISMS 
Each user will have a specific set of requirements, but there are some 
general principles that can be considered when choosing and using 
NanoMechanisms. 
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Configuring multi axis systems 

Abbe error 

When specimens are mounted on to the NanoMechanism, Abbe errors 
have to be considered carefully due to the parasitic angular motions. 
Small angular errors can have a large affect at the nanometre level: for 
example, a tilt of just 1 µrad with an offset of 1 mm gives a 1 nm position 
error. To reduce this effect, specimens should be positioned as close as 
possible to the measuring axes of the sensors. For example, in an XYZ 3 
axis NanoMechanism system the specimen holder is located at the 
point which is co-linear with the sensor measuring axes, as shown in 
figure 7.11 The effects of yaw, pitch and roll of the XY stage can thus  
be minimised.  

 

Z

XY

Capacitance
sensors

Sample holder

 
 

Cosine error 

Take care to align the motion axes of the stage with the axes of the 
system in which it is used. If there is an angular offset, then the users 
system may see less motion than is actually occurring: see Chapter 2, 
Accuracy, Trueness and Precision, Cosine and Abbe errors. 

Customised configurations 

It is not necessary to buy a stage to get closed loop multi-axis control. 
Many systems benefit from using separate translators and sensors in 
specially constructed mechanisms. This can enable the sensors to be 
placed as close as possible to the point where control is required. Such 
systems are by their nature very specific to individual requirements but 
there are five basic questions that should be asked when choosing the 
positioning and measuring components: 

 

Fig. 7.11 Minimising Abbe error 
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1. How far? Determines the technology; <100 µm: piezo, 
>100 µm: mechanical amplification of piezo 
motion or DC motors driving screws. See 
Mechanical amplification above. 

2. How fast? Determines the power rating of the driving 
amplifier: See Chapter 3, Servo control 

3. How heavy? Determines the mechanical resonant frequency  
(via the stiffness) which in turn limits the closed 
loop bandwidth. See Chapter 3, Servo control. 

4. High linearity? Determines the choice of sensor size and the 
measuring range. See Chapter 5, Capacitance 
sensors. 

5. Low noise? Determines the closed loop bandwidth and the 
measuring range. See Chapter 5, Capacitance 
sensors. 

Improving performance 
Stages and controllers are supplied optimised for most general 
applications but there are some tricks that can be applied to squeeze the 
last drop of performance out of a system. 

Mapping correction 

An obvious place to start is with mapping correction. During non-
linearity determination (see Static parameters: Non-linearity above) a 
sixth order polynomial is fitted to the residual curve. The reverse 
polynomial can be used to map out the higher order terms  by applying 
it to the command before sending it to the controller. Use the direct 
polynomial to correct the position read-back. 

Abbe and cosine error correction 

The roll, pitch, yaw and orthogonality are measured for each stage, so 
their effects can be compensated for a given point on the stage by 
calculating the X and Y commands required to position the required 
point. 

 

Command filtering 

Dynamic performance can also often be improved by not exciting 
resonances in the first place. Convolve Inc. have some marvelous 
techniques for modifying the command so as not to excite resonances 
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and thus improve settling times. This works well if one is interested in 
controlling a somewhat resonant system attached to a stage. 

Temperature control 

All points on the stage will move with respect to the isostatic mounting 
datum (origin) due to thermal expansion of the material from which the 
metrology stage is manufactured. Even for a SuperInvar stage of size  
100 x 100 mm, a 1 K temperature change will cause 30 nm change in 
dimension (α = 0.3 ppm·K-1). For high accuracy positioning over a 
period of time, temperature control is recommended.  
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APPENDIX. TRUE POSITION MEASUREMENT 
Back in Chapter 2 we introduced the concept of a true position. 
Calibration consists of measuring the true position of a stage with 
respect to the commanded position. It is measured as the displacement 
in all six degrees of freedom for a given command from the position 
defined by command zero. But what is our true metre rule? 

The second is defined as the duration of 9 192 631 770 periods of the 
radiation corresponding to the transition between the two hyperfine 
levels of the ground state of the caesium-133 atom. The metre is then 
defined as the length of path traveled by light in vacuum during a time 
interval of  1/299 792 458 of a second. So to get a perfect metre to which 
we can refer, all we have to do is get a few caesium-133 atoms and see 
how far a light beam goes in  9 192 631 770/299 792 458 periods of the 
above mentioned hyperfine transition. In a perfect vacuum. 

The above may be a bit tongue-in-cheek, but it does illustrate that at 
least there is an absolute definition of the quantity we want to measure: 
distance (as long as we can ignore Einstein!). Doing it directly as 
suggested above, however, is a little impractical and usually one uses a 
more convenient metre rule. The He-Ne laser provides this. 

The wavelength of the He-Ne laser line is nominally 632.817 3 nm in 
vacuum, which can  be corrected for use in air, but it will vary a bit 
depending on the mode structure of the particular laser and 
atmospheric fluctuations. The accuracy will be at least one part in 107 
which is 0.01 nm in 100 µm. The He-Ne laser is used in a Michelson 
laser interferometer to measure displacement. 

The Michelson interferometer 
Fig. 7.12 is a schematic diagram of a Michelson interferometer. 

Moving stage

Laser

M1

M2

A

D1

D2

 

 

Light from the laser hits beam splitter A. Half of it is transmitted to the 
retro-reflector M2 mounted on the stage on test and the other half is 

In the olden days we had: 

3 barleycorns = 1 inch; 
12 inches = 1 foot; 
3 feet = 1 yard; 
22 yards = 1 chain; 
10 chains = 1 furlong; 
8 furlongs = 1 mile. 

Crazy. 

Now we have: 

c = speed of light in vacuum; 
1 s = 9 192 631 770  133Cs periods; 
1 m= c x 
9 192 631 770/299 792 458. 

Much better.  

Fig. 7.12. Michelson interferometer 
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reflected to the fixed retro-reflector M1. The two beams return to the 
beam splitter where they superimpose and fall on detectors D1 and D2. 
As the stage on test moves, alternate constructive and destructive 
interference will take place between the beams falling on detector D1. 
Similar interference will take place between the beams falling on D2 but 
there will be a phase difference between these and those on D1. This 
happens because light reflected from the beam splitter will be phase 
shifted with respect to the light transmitted.  

A bright ‘fringe’ is seen every half wavelength (λ/2) of motion of the 
stage, so this provides a measurement scale with  tick-marks every 
316.408 65 nm. Electronic interpolation of the D1 and D2 signals can 
give a readout with a resolution of a couple of nanometres for a general 
purpose system, or about 0.3 nm for a very precise system designed by 
the UK National Physical Laboratory and used at Queensgate for some 
precision work. The relative phase of the signals from D1 and D2 can be 
used to determine the direction of travel of the stage.  

 

Stage calibration 
Setting of the scale factor is the major calibration activity performed on 
all stages. 

A retro-reflector (M2) is mounted on the stage, on the axis being 
calibrated and the following procedure carried out. 

1. Set the command to zero and zero the interferometer readout. 

2. Step the stage over its full range in both directions taking around 
100 steps in each direction and recording the interferometer reading 
at each step. 

3. Fit a fourth order power series to the interferometer reading (xp) v. 
command (xc) and derive the ‘b’ coefficients. 

4. Load the ‘b’ coefficients into the controller to correct the stage 
sensor output, see Chapter 3, Servo Control: Static mapping. 

5. Repeat steps 1 to 3 and record the new ‘b’ coefficients for supply to 
the user and later use. Note that b1 should now be unity and the 
remaining coefficients very small as the system will now be virtually 
linear. 

The mapping function is dictated primarily by the geometry of the 
capacitance sensors in the stage, see Chapter 5, Capacitance Sensors: 
Practical capacitors. The controller therefore actually stores the 
coefficients in an EPROM located in the stage. This means that if the 
controller is to be used with a variety of stages, the correct mapping 
functions will always be utilised. 

An early Michelson interferometer 
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The mapping procedure is carried out on all axes of the stage on test. 

REFERENCES 
S.  T. Smith and D. G. Chetwynd, Foundations of Ultraprecision 

Mechanism Design, Gordon and Breach  Science Publishers, 1994 
 
Convolve Inc. 1 Quarter Mile Road, Armonk, NY 10504 
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GLOSSARY 

TERMS 
This is a list of terms used to describe system performance. Description terms in italics refer to other entries 
in the glossary but note that terms and sub-terms only appear once: if you can’t find ‘measurement 
hysteresis’ try ‘hysteresis, measurement’. In most cases the symbol is given only for the ‘x’ component of 
the term in question: y, z, γ, θ, φ may be substituted as required. 

 

Term Symbol Description Units Page(s) 
     
Abbe  error 
 measuremen
t 
 

 
 

 
δxmθ.abbe 
 
δxmφ.abbe 
 
δymγ.abbe 
 
δymφ.abbe 
 
δymγ.abbe 
 
δymθ.abbe 

After Ernst Karl Abbe (1840-1905), a German 
mathematician and physicist. A measurement error 
produced by roll, pitch or yaw when the point of interest is 
not on the measurement axis. . 
Measurement error along the X axis caused by a rotation 
about the Y axis coupled with a Z Abbe offset. 
Measurement error along the X axis caused by a rotation 
about the Z axis coupled with a Y Abbe offset. 
Measurement error along the Y axis caused by a rotation 
about the X axis coupled with a Z Abbe offset. 
Measurement error along the Y axis caused by a rotation 
about the Z axis coupled with a X Abbe offset. 
Measurement error along the Z axis caused by a rotation 
about the X axis coupled with a Y Abbe offset. 
Measurement error along the Z axis caused by a rotation 
about the Y axis coupled with a X Abbe offset. 

 
 
 
nm 

 
 
 
12, 13,  
24,  98 

 position  
 
δxpθ.abbe 
 
δxpφ.abbe 
 
δypγ.abbe 
 
δypφ.abbe 
 
δypγ.abbe 
 
δypθ.abbe 

A position error produced by roll, pitch or yaw when the 
point of interest is not on the motion axis.. 
Position error along the X axis caused by a rotation about 
the Y axis coupled with a Z Abbe offset. 
Position error along the X axis caused by a rotation about 
the Z axis coupled with a Y Abbe offset. 
Position error along the Y axis caused by a rotation about 
the X axis coupled with a Z Abbe offset. 
Position error along the Y axis caused by a rotation about 
the Z axis coupled with a X Abbe offset. 
Position error along the Z axis caused by a rotation about 
the X axis coupled with a Y Abbe offset 
Position error along the Z axis caused by a rotation about 
the Y axis coupled with a X Abbe offset. 

 
 
nm 

 
 
12, 13,  
24,  98 

Abbe offset  dx.abbe 
dy.abbe 
dz.abbe 

Distance of the point of interest from the motion axis.  µm 13, 23 

Accuracy 
 measuremen
t 

 
δxmA 

 
Arithmetic sum of  measurement trueness and precision, 
e.g. 
δxmA=δxmS+δxmR 

 
nm 

 
7 
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Term Symbol Description Units Page(s) 
     
 position δxpA Arithmetic sum of  position trueness and precision, e.g. 

δxpA=δxpS+δxpR 
nm 17 

Axes X,Y,Z 
γ,θ,φ 

A reference frame used for distance, motion and rotation 
measurement. Queensgate uses a right-handed orthogonal 
Cartesian system. The origin of the reference frame is the 
true position when the position commands xc,yc,zc are zero. 

- 5,17 

Backlash 
 

- Hysteresis that is constant over the range  % 22 

Bandwidth 
 measuremen
t 

 
Bxm 

 
The frequency range over which measurements are taken: 
dc to 3dB down point 

 
Hz 

 
14, 66 

 positioning Bxp The frequency range to which the stage can respond: dc to 
3dB down point 

Hz 21 

Cosine error 
 measuremen
t 

 
 
 
δxm.cosφ  

 
δxm.cosθ  

 

δym.cosγ  

 
δym.cosφ 

 
δzm.cosγ  

 
δzm.cosθ 

 
A measurement error produced when the measurement axis 
is misaligned with respect to the motion axis.  
X measurement error produced by misalignment of the X 
axes about the Z axis. 
X measurement error produced by misalignment of the X 
axes about the Y axis. 
Y measurement error produced by misalignment of the Y 
axes about the X axis. 
Y measurement error produced by misalignment of the Y 
axes about the Z axis. 
Z measurement error produced by misalignment of the Z 
axes about the X axis. 
Z measurement error produced by misalignment of the Z 
axes about the Y axis. 

 
 
 
nm 

 
 
 
12, 98 

 position  
 
δxp.cosφ  

 
δxp.cosθ  

 

δyp.cosγ  

 
δyp.cosφ 

 
δzp.cosγ  

 
δzp.cosθ 

A position error produced when the motion axis is 
misaligned with respect to the true position measuring 
device axis.  
X position error produced by misalignment of the X axes 
about the Z axis. 
X position error produced by misalignment of the X axes 
about the Y axis. 
Y position error produced by misalignment of the Y axes 
about the X axis. 
Y position error produced by misalignment of the Y axes 
about the Z axis. 
Z position error produced by misalignment of the Z axes 
about the X axis. 
Z position error produced by misalignment of the Z axes 
about the Y axis. 

 
 
nm 

 
 
12, 98 

Crosstalk 
 measuremen
t 

 
 
δxmy 
δxmz 
δymx 
δymz 
δzmx 
δzmy 

A measurement error along a given axis due to motion 
along another axis. See also orthogonality and Abbe error.   
X measurement caused by a displacement along Y 
X measurement caused by a displacement along Z 
Y measurement caused by a displacement along X 
Y measurement caused by a displacement along Z 
Z measurement caused by a displacement along X 
Z measurement caused by a displacement along Y 

 
 
nm 
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Term Symbol Description Units Page(s) 
     
 position  

 
 
δxpy 
δxpz 
δypx 
δypz 
δzpx 
δzpy 

A position error along a given axis due to motion along 
another axis. See also orthogonality and Abbe error.  Also 
known as ‘runout’ 
Displacement along X axis caused by a displacement along Y 
Displacement along X axis caused by a displacement along Z 
Displacement along Y axis caused by a displacement along X 
Displacement along Y axis caused by a displacement along Z 
Displacement along Z axis caused by a displacement along X 
Displacement along Z axis caused by a displacement along Y 

 
 
 
nm 

 

Dead band 
 measuremen
t 

 
δxm.dead  

 
A region of true positions over which there is no change in 
measured position. 

 
nm 

 
22 

 position δxp.dead  A region of desired positions over which there is no change 
in true position. 
 

nm 22 

Displacement 
 

dx,dy,dz A change in position nm 5 

Drift  
 measuremen
t 

 
δxm.drift 

 
A change in mean measured position on a time scale of 
minutes or more with the true position constant. It includes 
the effect of measurement temperature coefficient and 
other environmental effects.  

 
nm 

 
17 

 position δxp.drift A change in mean true position on a time scale of minutes 
or more with the commanded position constant. It includes 
the effect of position temperature coefficient and other 
environmental effects.  

nm 17 

Hysteresis 
 measuremen
t 

 
δxm.hyst 

 
The difference between measured positions when a single 
true position is approached from both ends of the range.  

 
% 

 
16 

 position δxp.hyst The difference between true positions when a single desired 
position is approached from both ends of the range. The 
maximum value is quoted, as a percentage of the range. 

% 22-24, 
75,76,82 
 

Interference − General term for unwanted noise contributions from 
external sources such as the line voltage, processor clocks, 
radio transmitters etc. 

pm 14, 67 

Linearity error  
 measuremen
t 
 

 
δxm.lin 

 
measurement mapping error with a first order power series 
(straight line) measurement mapping function. 

 
% 

 
8 

 position 
 

δxp.lin Position mapping error with a first order power series 
(straight line) position mapping function. 

% 19 

Mapping accuracy  
 measuremen
t 

 
δax0,  
δax1,  
δax2,  
δax3,  
δax4 

 
A measure of how well the measurement mapping 
polynomial describes the actual sensor performance. Quoted 
as errors on the measurement mapping coefficients. 

 
µm,     
% 
µm-1, 
µm-2 
µm-3 

 
9 

 position δbx0,  
δbx1,  
δbx2, 
 δbx3,  

A measure of how well the position mapping polynomial 
describes the actual positioning performance. Quoted as 
errors on the position mapping coefficients.  
 

µm, 
% 
µm-1, 
µm-2 

20 
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Term Symbol Description Units Page(s) 
     

δbx4 µm-3 
Mapping coefficients 
 measuremen
t 

 
ax0 

ax1 

ax2 

ax3 

ax4 

 
Elements of the 'A' row vectors. See Mapping polynomial, 
measurement.. 

 
µm, 
% 
µm-1, 
µm-2 
µm-3 

 
20 

 position bx0 

bx1 

bx2 

bx3 

bx4 

Elements of the 'B' row vectors. See Mapping polynomial, 
position. 

µm,  
% 
µm-1, 
µm-2 
µm-3 

20 

Mapping error 
 measuremen
t 

 
δxm.map 

 
One half of the maximum peak to peak amplitude of the 
residual curve to the measurement mapping function, 
expressed as a percentage of the full measurement range. 

 
% 

 
9 

 position δxp.map One half of the maximum peak to peak amplitude of the 
residual curve to the position mapping function, expressed 
as a percentage of the full positioning range. 

% 19 

 
 

    

Mapping function 
 measuremen
t 

 
xm=f(xp) 

 
A general function that predicts a position measurement 
given an true position.  

 
- 

 
8 

 position xp=f(xc) A general function that  predicts an true position given a 
position command. 

- 20 

Mapping polynomial 
 measuremen
t 

 
xm=AXXP 
 

 
A power series representation of a measurement mapping 
function. The 'A' terms are row vectors of measurement 
mapping coefficients and  XA,  YA and ZA are column 
vectors of  powers of the true position xa,ya,za. 

 
- 

 
8 

 position xp=BXXC 
 

A power series representation of a position mapping 
function. The 'B' terms are row vectors of position mapping 
coefficients and  XC,  YC and ZC are column vectors of  
powers of the command position xc,yc,zc. 

- 20 

Noise 
 measuremen
t 

 
δxm.n 

 
The 1σ spread of position measurements when the position 
being measured is stationary. It is a combination of sensor 
noise and quantisation noise. 

 
nm 

 
13 

 position δxp.n The 1σ spread of true positions when the position 
command is stationary. 

nm 20 

Noise coefficient 
 measuremen
t 

 
kxm.ndens 

A system constant that enables the measurement noise 
density to be determined knowing the capacitor geometry. 

Hz-1/2 65,66 

 position  
kxp.ndens 

A system constant that enables the position noise density to 
be determined knowing the capacitor geometry. 

Hz-1/2 65,66 

Noise, Gaussian 
 measuremen
t 

 
δxm.ng 

 
Contribution to sensor noise, generally with uniform density 
over the bandwidth , caused by thermal effects in electronic 
components.  

 
nm 

 
14 

 position δxp.ng Contribution to position noise, generally with uniform nm 14 
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Term Symbol Description Units Page(s) 
     
 density over the bandwidth , caused by thermal effects in 

electronic components.  
Noise density 
 measuremen
t 

 
δxm.ndens 

 
The RMS Gaussian measurement noise per unit bandwidth. 

 
pm·Hz-1/2 

 
15 

 position δxp.ndens The RMS Gaussian position noise per unit bandwidth  pm·Hz-1/2 20 
Noise, piezo drive δxp.ndrive Contribution to position noise from the piezo drive 

electronics 
nm 21 

Noise, quantisation 
 measuremen
t 

 
δxm.nquant 

 
Contribution to measurement noise due to the finite 
number of bits used in digitisation 

 
nm 

 
16 

 position 
 

δxp.nquant Contribution to position noise due to the finite number of 
bits used in digitisation 

nm 26 

Noise, sensor δxm.nsens Contribution to measurement noise. A combination of 
Gaussian noise and interference 

nm 13 

Non-linearity - See Linearity error   
Orthogonality - The property of being at right angles. Orthogonality error 

will cause crosstalk. 
 96 

Orthogonality error δφorth 
δγorth 
δθorth 

The departure of the angle between the X and Y axes from 
90º.  
The departure of the angle between the Y and Z axes from 
90º.  
The departure of the angle between the Z and X axes from 
90º.  

mrad 96 

Pitch  
δθx, 
δφy, 
δγz  

A rotation about the: 
Y axis when moving along the  X axis; 
Z axis when moving along the Y axis; 
X axis when moving along the Z axis. 

 
µrad·µm-1 

 
6,95 

 
 
 

  
 
 
 

  

Position x,y,z A point in space measured with respect to the axes  5 
 desired xd,yd.zd The position that the user requires µm 20 
 command xc,yc,zc The position set-point sent to a controller µm 18 
 measured xm,ym,zm A mean position as measured by the system under discussion µm 7 
 true xp,yp,zp A position as measured with a perfect  measurement system µm 7,18,20 
Precision  
 command 

 
δxcR 

 
The  1σ spread of commands relating to a given desired 
position. Normally this will be the same as the quantisation 
noise caused by digitisation of the desired position. 

 
nm 

 
16, 26 

 measuremen
t 

δxmR The 1σ spread of measured positions including 
measurement mapping error, resolution, noise, and 
reproducibility with the true position held constant. 

nm 7 

 measured 
 position 

δxmpR The 1σ spread of measured positions including 
measurement precision and position precision 

nm 18 

 position δxpR The 1σ spread of true positions including position mapping 
error, resolution, noise, and reproducibility with the 
commanded position held constant. 

nm 18 

Range     
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Term Symbol Description Units Page(s) 
     
 measuremen
t 
 

dxp .max The maximum displacement that can be measured.  µm  

 position 
 

dxp .max The maximum displacement that can be generated.  µm 66,82,86 

Repeatability 
 measuremen
t 

 
δxm.rpt 

 
The 1σ spread of the measured positions when the same 
true half range displacement is applied to the sensor 
repeatedly, under the same operating conditions and in the 
same direction. Repeatability does not include hysteresis or 
drift. 

 
nm 

 
16 

 position δxp.rpt The 1σ spread of the true positions when the same true half 
range displacement is commanded repeatedly, under the 
same operating conditions and in the same direction. 
Repeatability does not include hysteresis or drift. 

nm 24 

Reproducibility 
 measuremen
t 

 
δxm.rpd 

 
The 1σ spread of the measured positions when the same 
true half range displacement is applied to the sensor 
repeatedly, approaching from both directions. 
Reproducibility includes hysteresis, dead band, drift and 
repeatability. 

 
nm 

 
16 

 position δxp.rpd The 1σ spread of the true positions when the same true half 
range displacement is commanded repeatedly, approaching 
from both directions. Reproducibility includes hysteresis, 
dead band, drift and repeatability. 

nm 22 

Resolution 
 measuremen
t 

 
δxm.res 

 
The smallest measured displacement that can be resolved. 
This will be the greater of measurement noise or 
quantisation noise. 

 
pm 

 
13 

 position δxp.res The smallest displacement that can be commanded. This 
will be the greater of position noise or quantisation noise. 

pm 15, 20 

Residual curve 
 measuremen
t 

  
A function of the true position and position measurement 
obtained by subtracting the measurement mapping function 
prediction from the position measurements. For example: 

( )Resm x x x A Xm p m x p, .= −  

 
nm 

 
9 

 
 
 
 

    

Residual curve
 position 

 A function of true position and position command obtained 
by subtracting the position mapping function prediction 
from the true position. For example: 

Resp( , ) .x x x B Xp c p x c= −  

nm 9 

Resonant frequency 
  lateral 

 
f0x 

 
The frequency of the fundamental lateral oscillation modes 
along the measurement axes.  

 
Hz 

 
34, 89 

 rotational f0γ The frequency of the fundamental rotational oscillation 
modes around the measurement axes.  

Hz 34, 89 
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Term Symbol Description Units Page(s) 
     
Roll  

δγx 
δθy 
δφz 

A rotation about the: 
X axis when moving along the X axis; 
Y axis when moving along the Y axis; 
Z axis when moving along the Z axis. 

 
µrad·µm-1 

 
6,95 

Runout 
 

 See crosstalk, position.   

Scale factor 
 measuremen
t 

 
ax1 

 
The a1 element of the 'A' row vectors when a first order 
power series mapping function (straight line) is used. See 
Mapping polynomial, sensor. 

 
− 

 
9 

 position bx1 The b1 element of the 'B' row vectors when a first order 
power series mapping function (straight line) is used. See 
Mapping polynomial, position. 

− 20 

 system SFx.sys  A multiplier used to convert system units [volts in an 
analog system or numbers (system units: SU) in a digital 
system] to measurement units (µm) 

µm·V-1 or 
µm·SU-1 

 

Scale factor error 
 measuremen
t 

 
δax1 

 
The sensor mapping accuracy when a first order 
polynomial (straight line) sensor mapping function is used. 

 
% 

 
9 

 position δbx1 The position mapping accuracy when a first order 
polynomial (straight line) position mapping function is 
used. 

% 20 

Settling time 
 small signal 

 
txs.s 

 
Time taken for the true position to get to within 1% of its 
final value and stay there after a command step of 0.5µm. 

 
ms 

 
37, 41, 
90 

 large signal txs.l Time taken for the true position to get to within 1% of its 
final value and stay there after a command step of 80% of 
the full range. 

ms 41, 91 

Slew rate uxp .max The highest rate of change of true position with time that 
can be achieved.  

µm·ms-1 38, 40, 7
9, 92 

System units 
 

SU The number units used internally in a digital control system.    

Temperature 
coefficient 
 measuremen
t 

 
αxm 

 
The rate of change of a measured position with respect to 
temperature with constant true position. 

 
nm·K-1

 

 

 
43, 86 

 position αxp The rate of change of a true position with respect to 
temperature with constant commanded position. 

nm·K-1  43, 86 

Trueness 
 measuremen
t 

 
δxmS 

 
The difference between the mean measured position and 
the true position, xm-xp 

 
nm 

 
7 

 position δxpS The difference between the true position and the desired 
position. In a closed loop system this will be the same as 
the measurement trueness. 

nm 18 

Yaw  
δφx 
δγy 
δθz 

A rotation about the: 
Z axis when moving along the X axis; 
X axis when moving along the Y axis; 
Y axis when moving along the Z axis. 

µrad·µm-1 6, 95 
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SYMBOLS 
This lists most of the symbols used in the rest of the text in alphabetical order of the x component. Page 
numbers refer to the principle definition of the relevant term. 
 
Symbol Term Description Units Page(s) 
     
ax0 

ax1 

ax2 

ax3 

ax4 

Mapping coefficients, 
measurement 

Elements of the 'A' row vectors. See Mapping polynomial, 
measurement.. 

µm, 
- 
µm-1, 
µm-2 
µm-3 

20 

ax1 Scale factor, 
measurement 

The a1 element of the 'A' row vectors when a first order 
power series mapping function (straight line) is used. See 
Mapping polynomial, sensor. 

- 9 

αxm Temperature 
coefficient, 
measurement 

The rate of change of a measured position with respect to 
temperature with constant true position. 

nm·K-1
 

 
43, 86 

αxp Temperature 
coefficient, position 

The rate of change of a true position with respect to 
temperature with constant commanded position. 

nm·K-1  43, 86 

bx0 

bx1 

bx2 

bx3 

bx4 

Mapping coefficients, 
position 

Elements of the 'B' row vectors. See Mapping polynomial, 
position. 

µm,  
- 
µm-1, 
µm-2 
µm-3 

20 

bx1 Scale factor, position The b1 element of the 'B' row vectors when a first order 
power series mapping function (straight line) is used. See 
Mapping polynomial, position. 

- 20 

Bxm Bandwidth, 
measurement 

The frequency range over which measurements are taken: 
dc to 3dB down point 

Hz 14, 66 

Bxp Bandwidth, positioning The frequency range to which the stage can respond: dc to 
3dB down point 

Hz 21 

δax0,  
δax1,  
δax2,  
δax3,  
δax4 

Mapping accuracy, 
measurement 

A measure of how well the measurement mapping 
polynomial describes the actual sensor performance. Quoted 
as errors on the measurement mapping coefficients. 

µm,     
% 
µm-1, 
µm-2 
µm-3 

9 

δax1 Scale factor error, 
measurement 

The sensor mapping accuracy when a first order 
polynomial (straight line) sensor mapping function is used. 

m·m-1 9 

δbx0,  
δbx1,  
δbx2, 
δbx3,  
δbx4 

Mapping accuracy, 
position 

A measure of how well the position mapping polynomial 
describes the actual positioning performance. Quoted as 
errors on the position mapping coefficients.  
 

µm, 
% 
µm-1, 
µm-2 
µm-3 

20 

δbx1 Scale factor error, 
position 

The position mapping accuracy when a first order 
polynomial (straight line) position mapping function is 
used. 

% 20 

δφorth 
δγorth 
δθorth 

Orthogonality error The departure of the angle between the X and Y axes from 
90º.  
The departure of the angle between the Y and Z axes from 
90º.  
The departure of the angle between the Z and X axes from 
90º.  

mrad 96 
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Symbol Term Description Units Page(s) 
     
δφx 
δγy 
δθz 

Yaw A rotation about the: 
Z axis when moving along the X axis; 
X axis when moving along the Y axis; 
Y axis when moving along the Z axis. 

µrad·µm-1 6, 95 

δγx 
δθy 
δφz 

Roll A rotation about the: 
X axis when moving along the X axis; 
Y axis when moving along the Y axis; 
Z axis when moving along the Z axis. 

µrad·µm-1 6,95 

     
δθx, 
δφy, 
δγz  

Pitch A rotation about the: 
Y axis when moving along the  X axis; 
Z axis when moving along the Y axis; 
X axis when moving along the Z axis. 

µrad·µm-1 6,95 

dx,dy,dz Displacement 
 

A change in position nm 5 

dx.abbe 
dy.abbe 
dz.abbe 

Abbe offset  Distance of the point of interest from the motion axis.  µm 13, 23 

δxcR Precision, command The  1σ spread of commands relating to a given desired 
position. Normally this will be the same as the quantisation 
noise caused by digitisation of the desired position. 

nm 16, 26 

δxm.cosφ  

 
δxm.cosθ  

 

δym.cosγ  

 
δym.cosφ 

 
δzm.cosγ  

 
δzm.cosθ 

Cosine error, 
measurement 

X measurement error produced by misalignment of the X 
axes about the Z axis. 
X measurement error produced by misalignment of the X 
axes about the Y axis. 
Y measurement error produced by misalignment of the Y 
axes about the X axis. 
Y measurement error produced by misalignment of the Y 
axes about the Z axis. 
Z measurement error produced by misalignment of the Z 
axes about the X axis. 
Z measurement error produced by misalignment of the Z 
axes about the Y axis. 

nm 12, 98 

δxm.dead  Dead band, 
measurement 

A region of true positions over which there is no change in 
measured position. 

nm 22 

δxm.drift Drift, measurement A change in mean measured position on a time scale of 
minutes or more with the true position constant. It includes 
the effect of measurement temperature coefficient and 
other environmental effects.  

nm 17 

δxm.hyst Hysteresis, 
measurement 

The difference between measured positions when a single 
true position is approached from both ends of the range.  

% 16 

δxm.lin Linearity error, 
measurement 

measurement mapping error with a first order power series 
(straight line) measurement mapping function. 

% 8 

δxm.map Mapping error, 
measurement 

One half of the maximum peak to peak of the residual 
curve to the measurement mapping function, expressed as a 
percentage of the full measurement range. 

% 9 

δxm.n Noise, measurement The 1σ spread of position measurements when the position 
being measured is stationary. It is a combination of sensor 
noise and quantisation noise. 

nm 13 

δxm.ndens Noise density, 
measurement 

The RMS Gaussian measurement noise per unit bandwidth. pm·Hz-1/2 15 
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Symbol Term Description Units Page(s) 
     
δxm.ng Noise, Gaussian, 

measurement 
Contribution to sensor noise, generally with uniform density 
over the bandwidth , caused by thermal effects in electronic 
components.  

nm 14 

δxm.nquant Noise, quantisation, 
measurement 

Contribution to measurement noise due to the finite 
number of bits used in digitisation 

nm 16 

δxm.nsens Noise, sensor Contribution to measurement noise. A combination of 
Gaussian noise and interference 

nm 13 

δxm.res Resolution, 
measurement 

The smallest measured displacement that can be resolved. 
This will be the greater of measurement noise or 
quantisation noise. 

pm 13 

δxm.rpd Reproducibility, 
measurement 

The 1σ spread of the measured positions when the same 
true half range displacement is applied to the sensor 
repeatedly, approaching from both directions. 
Reproducibility includes hysteresis, dead band, drift and 
repeatability. 

nm 16 

     
δxm.rpt Repeatability, 

measurement 
The 1σ spread of the measured positions when the same 
true half range displacement is applied to the sensor 
repeatedly, under the same operating conditions and in the 
same direction. Repeatability does not include hysteresis or 
drift. 

nm 16 

δxmA Accuracy, 
measurement 

Arithmetic sum of  measurement trueness and precision, 
e.g. 
δxmA=δxmS+δxmR 

nm 7 

δxmpR Precision, measured 
position 

The 1σ spread of measured positions including 
measurement precision and position precision 

nm 18 

δxmθ.abbe 
 
δxmφ.abbe 
 
δymγ.abbe 
 
δymφ.abbe 
 
δymγ.abbe 
 
δymθ.abbe 

Abbe  error, 
measurement 
 

Measurement error along the X axis caused by a rotation 
about the Y axis coupled with a Z Abbe offset. 
Measurement error along the X axis caused by a rotation 
about the Z axis coupled with a Y Abbe offset. 
Measurement error along the Y axis caused by a rotation 
about the X axis coupled with a Z Abbe offset. 
Measurement error along the Y axis caused by a rotation 
about the Z axis coupled with a X Abbe offset. 
Measurement error along the Z axis caused by a rotation 
about the X axis coupled with a Y Abbe offset. 
Measurement error along the Z axis caused by a rotation 
about the Y axis coupled with a X Abbe offset. 

nm 12, 13,  
24,  98 

δxmR Precision, 
measurement 

The 1σ spread of measured positions including 
measurement mapping error, resolution, noise, and 
reproducibility with the true position held constant. 

nm 7 

δxmS Trueness, 
measurement 

The difference between the mean measured position and 
the true position, xm-xp 

nm 7 

δxmy 
δxmz 
δymx 
δymz 
δzmx 
δzmy 

Crosstalk, 
measurement 

X measurement caused by a displacement along Y 
X measurement caused by a displacement along Z 
Y measurement caused by a displacement along X 
Y measurement caused by a displacement along Z 
Z measurement caused by a displacement along X 
Z measurement caused by a displacement along Y 

nm  

δxp.cosφ  

 
Cosine error, position A position error produced when the motion axis is 

misaligned with respect to the true position measuring 
nm 12, 98 
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Symbol Term Description Units Page(s) 
     
δxp.cosθ  

 

δyp.cosγ  

 
δyp.cosφ 

 
δzp.cosγ  

 
δzp.cosθ 

device axis.  
X position error produced by misalignment of the X axes 
about the Z axis. 
X position error produced by misalignment of the X axes 
about the Y axis. 
Y position error produced by misalignment of the Y axes 
about the X axis. 
Y position error produced by misalignment of the Y axes 
about the Z axis. 
Z position error produced by misalignment of the Z axes 
about the X axis. 
Z position error produced by misalignment of the Z axes 
about the Y axis. 

δxp.dead  Dead band, position A region of desired positions over which there is no change 
in true position. 

nm 22 

δxp.drift Drift, position A change in mean true position on a time scale of minutes 
or more with the commanded position constant. It includes 
the effect of position temperature coefficient and other 
environmental effects.  

nm 17 

δxp.hyst Hysteresis, position The difference between true positions when a single desired 
position is approached from both ends of the range. The 
maximum value is quoted, as a percentage of the range. 

% 22-24, 
75,76,82 
 

δxp.lin Linearity error, 
position 
 

Position mapping error with a first order power series 
(straight line) position mapping function. 

% 19 

δxp.map Mapping error, 
position 

One half of the maximum peak to peak of the residual 
curve to the position mapping function, expressed as a 
percentage of the full positioning range. 

% 19 

dxp .max Range, measurement 
 

The maximum displacement that can be measured.  µm  

dxp .max Range, position 
 

The maximum displacement that can be generated.  µm 66,82,86 

δxp.n Noise, position The 1σ spread of true positions when the position 
command is stationary. 

nm 20 

δxp.ndens 

 
Noise density, position The RMS Gaussian position noise per unit bandwidth  pm·Hz-1/2 20 

δxp.ndrive 

 
Noise, piezo drive Contribution to position noise from the piezo drive 

electronics 
nm 21 

δxp.ng Noise, Gaussian, 
position 
 

Contribution to position noise, generally with uniform 
density over the bandwidth , caused by thermal effects in 
electronic components.  

nm 14 

δxp.nquant Noise, quantisation, 
position 

Contribution to position noise due to the finite number of 
bits used in digitisation 

nm 26 

δxp.res Resolution, position The smallest displacement that can be commanded. This 
will be the greater of position noise or quantisation noise. 

pm 15, 20 

δxp.rpd Reproducibility, 
position 

The 1σ spread of the true positions when the same true half 
range displacement is commanded repeatedly, approaching 
from both directions. Reproducibility includes hysteresis, 
dead band, drift and repeatability. 

nm 22 

δxp.rpt Repeatability, position The 1σ spread of the true positions when the same true half 
range displacement is commanded repeatedly, under the 

nm 24 
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Symbol Term Description Units Page(s) 
     

same operating conditions and in the same direction. 
Repeatability does not include hysteresis or drift. 

δxpA Accuracy, position Arithmetic sum of  position trueness and precision, e.g. 
δxpA=δxpS+δxpR 

nm 17 

δxpθ.abbe 
 
δxpφ.abbe 
 
δypγ.abbe 
 
δypφ.abbe 
 
δypγ.abbe 
 
δypθ.abbe 

Abbe error, position Position error along the X axis caused by a rotation about 
the Y axis coupled with a Z Abbe offset. 
Position error along the X axis caused by a rotation about 
the Z axis coupled with a Y Abbe offset. 
Position error along the Y axis caused by a rotation about 
the X axis coupled with a Z Abbe offset. 
Position error along the Y axis caused by a rotation about 
the Z axis coupled with a X Abbe offset. 
Position error along the Z axis caused by a rotation about 
the X axis coupled with a Y Abbe offset 
Position error along the Z axis caused by a rotation about 
the Y axis coupled with a X Abbe offset. 

nm 12, 13,  
24,  98 

δxpR Precision, position The 1σ spread of true positions including position mapping 
error, resolution, noise, and reproducibility with the 
commanded position held constant. 

nm 18 

δxpS Trueness, position The difference between the true position and the desired 
position. In a closed loop system this will be the same as 
the measurement trueness. 

nm 18 

δxpy 
δxpz 
δypx 
δypz 
δzpx 
δzpy 

Crosstalk, position Displacement along X axis caused by a displacement along Y 
Displacement along X axis caused by a displacement along Z 
Displacement along Y axis caused by a displacement along X 
Displacement along Y axis caused by a displacement along Z 
Displacement along Z axis caused by a displacement along X 
Displacement along Z axis caused by a displacement along Y 

  

f0γ Resonant frequency, 
rotational 

The frequency of the fundamental rotational oscillation 
modes around the measurement axes.  

Hz 34, 89 

f0x Resonant frequency, 
lateral 

The frequency of the fundamental lateral oscillation modes 
along the measurement axes.  

Hz 34, 89 

kxm.ndens Noise coefficient, 
measurement 

A system constant that enables the measurement noise 
density to be determined knowing the capacitor geometry. 

Hz-1/2 65,66 

kxp .ndens Noise coefficient, 
position 

A system constant that enables the position noise density to 
be determined knowing the capacitor geometry. 

Hz-1/2 65,66 

SFx.sys  Scale factor, system A multiplier used to convert system units [volts in an 
analog system or numbers (system units: SU) in a digital 
system] to measurement units (µm) 

µm·V-1 or 
µm·SU-1 

 

SU System units 
 

The numbers used internally in a digital control system. -  

txs.l Settling time, large 
signal 

Time taken for the true position to get to within 1% of its 
final value and stay there after a command step of 80% of 
the full range. 

ms 41, 91 

txs.s Settling time, small 
signal 

Time taken for the true position to get to within 1% of its 
final value and stay there after a command step of 0.5µm. 

ms 37, 41, 
90 

uxp .max Slew rate The highest rate of change of true position with time that 
can be achieved.  

µm·ms-1 38, 40, 7
9, 92 

x,y,z 
 

Position A point in space measured with respect to the axes µm 5 

X,Y,Z Axes A reference frame used for distance, motion and rotation - 5,17 
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Symbol Term Description Units Page(s) 
     
γ,θ,φ measurement. Queensgate uses a right-handed orthogonal 

Cartesian system. The origin of the reference frame is the 
true position when the position commands xc,yc,zc are zero. 

xc,yc,zc 

 
Position, command The position set-point sent to a controller µm 18 

xd,yd.zd 

 
Position, desired The position that the user requires µm 20 

xm,ym,zm 

 
Position, measured A mean position as measured by the system under discussion µm 7 

xm=AXXP 
 

Mapping polynomial, 
measurement 

A power series representation of a measurement mapping 
function. The 'A' terms are row vectors of measurement 
mapping coefficients and  XA,  YA and ZA are column 
vectors of  powers of the true position xa,ya,za. 

- 8 

xp,yp,zp 

 
Position, true  A position as measured with a perfect  measurement system µm 7,18,20 

xp=BXXC 
 

Mapping polynomial, 
position 

A power series representation of a position mapping 
function. The 'B' terms are row vectors of position mapping 
coefficients and  XC,  YC and ZC are column vectors of  
powers of the command position xc,yc,zc. 

- 20 
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A 

Abbe.........................................12 
error ..................12, 13, 24, 98 
error correction ...................99 
offset .............................13, 23 

accuracy...........................5, 7, 84 
mapping.................................9 
measurement..........................7 
position .........................17, 18 

aluminium alloy..................44, 47 
atomic force microscope ..........47 
autocollimator..........................95 
axes......................................5, 17 

B 

backlash .............................22, 93 
bandwidth...14, 21, 65, 66, 88, 90 

measurement..................14, 66 
position ...............................15 

C 

calibration ......................101, 102 
capacitance ..............................50 

calculation ...........................69 
measuring.............................53 
micrometer ................3, 49, 81 

long-range linear .............52 
long-range rotational.......52 
mounting considerations..67 
short -range linear ............52 
short -range rotational .....52 

stray ....................................54 
capacitor 

edge effects..........................54 
parallel plate........................50 
plate bow.............................62 
plate finish ...........................54 
plate flatness........................54 
plate tilt .........................54, 70 
practical...............................54 
rotary ..................................50 

Cartesian coordinates .................5 
closed-loop control ............17, 29 
command 

filtering............................. 100 
position............................... 18 
resolution ............................ 21 

control 
closed loop.................... 17, 29 
open loop............................ 27 

coordinates ................................ 5 
Cartesian ............................... 5 
cylindrical polar .................. 69 

cosine error ....................... 12, 98 
correction ........................... 99 

creep ....................................... 76 
cross springs ............................ 82 
crosstalk .................................. 96 
Curie temperature .................... 74 
cylindrical polar coordinates .... 69 

D 

damping....................... 34, 38, 88 
dead band................................. 22 
decibel ..................................... 34 
differential term ...................... 36 
Digital Piezo Translator ............ 3 
dimensional stability ................ 43 
displacement.............................. 5 
dissipation ............................... 80 
DPT .See Digital Piezo Translator 
drift ......................................... 17 

E 

edge effects.............................. 54 
electro-active materials ............. 2 
electro-discharge machining..... 46 
electro-magnetic compatibility 67 
electro-magnetic interference14, 67 
electron shot noise .................. 66 
electrostrictive effect ................ 2 
environmental effects........ 17, 67 
EPROM................................. 102 
error 

Abbe.................. 12, 13, 24, 98 
cosine............................ 12, 98 
linearity .............................. 10 

due to plate bow.............. 63 
due to plate tilt ... 59, 60, 61 

due to stray capacitance ..55 
mapping ................................ 9 
random.................................. 7 
signal................................... 36 
steady state.......................... 31 
systematic ............................. 7 

F 

Farady,M ................................. 49 
fast settling time ...................... 88 
fatigue life................................ 46 
ferroelectric materials .............. 73 
filtering the command............ 100 
finite element analysis .56, 69, 82 
flexure mechanisms.................. 82 
frequency response................... 37 

chaotic ................................ 40 
curves.................................. 37 
large signal........................... 38 
small signal.......................... 37 

fused silica................................ 44 

G 

gap........................................... 50 
nominal ............................... 66 

Gaussian noise.......................... 14 
guard ring........................... 55, 56 

shielded................................ 58 
simple.................................. 57 

guided motion .......................... 82 

H 

He-Ne laser ............................ 101 
horizontal .................................. 6 
humidity ...................... 17, 46, 68 
hysteresis ..................... 22, 24, 82 

loop......................... 23, 24, 76 
piezo ................................... 75 
position ............................... 92 
sensor .................................. 16 

I 

integral term............................ 31 
integrator................................. 31 
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analogue...............................31 
digital...................................32 
input limit ............................40 

interferometer 
laser .............................3, 9, 87 
Michelson..........................101 

Invar ..............................3, 45, 47 
isostatic mounting..............83, 84 

K 

kinematic mounting .................83 

L 

Laplace’s equation........55, 58, 69 
large signal ...............................41 

frequency response...............38 
settling time...................41, 91 

laser interferometer..3, 9, 87, 101 
lead screw...........................22, 24 
Leyden jar ................................49 
linear regression .........................9 
linearity ...................................66 

error ....................................10 
due to stray capacitance ..55 
guard ring........................58 
measurement .....................8 
plate bow.........................63 
plate tilt ..............59, 60, 61 
position...........................19 

piezo....................................76 
position ...............................93 

load..........................................88 

M 

machinability ...........................46 
mapping.....................................8 

accuracy.................................9 
coefficients..........................87 
correction ................32, 33, 99 
error ......................................9 
function .............................102 
power series ...........................8 
precision ................................9 
straight line............................8 
trueness..................................9 

material....................................86 
properties ............................43 

Maxwell, J.C.............................49 
measurement 

accuracy.................................7 
bandwidth.......................14, 66 
mapping.................................8 

function ......................8, 32 

parameters...................... 20 
noise ................................... 13 
precision ............................... 7 
repeatability ........................ 16 
reproducibility ..................... 16 
resolution ............................ 13 
scale factor............................ 9 
trueness ................................. 7 

mechanical amplification......... 82 
medium settling time ............... 88 
metre..................................... 101 
metrological datum .................. 46 
metrology frame...................... 83 
Michelson interferometer ...... 101 
micrometer 

capacitance ............... 3, 49, 81 
mounting considerations. 67 

long range linear.................. 52 
long range rotational ........... 52 
short range linear ................ 52 
short -range rotational ......... 52 

N 

NanoMechanism.................. 1, 46 
nanometre ................................. 1 
Nanometre Precision Mechanisms

........................................... 81 
nanopositioning......................... 1 
NanoSensor ......................... 3, 66 
noise........................ 7, 13, 64, 66 

coefficient..................... 65, 66 
density .................... 15, 64, 65 
electron shot ....................... 66 
equivalent displacement....... 21 
floor.................................... 22 
Gaussian .............................. 14 
measurement ....................... 13 
mechanical and acoustic ...... 22 
piezo drive .......................... 21 
position......................... 20, 92 
quantisation................... 16, 26 
sensor.................................. 13 
sources ................................ 14 
spectrum ............................. 13 

nominal gap............................. 66 
non-linearity .. See linearity, error 
number format ................... 15, 21 

O 

open-loop control ................... 27 
orthogonality .......................... 96 
oscillation................................ 37 

P 

parallel spring strip .................. 82 
parasitic motion....................... 82 
partial pressure......................... 67 
perfect measuring device ............ 6 
permittivity 

of vacuum............................ 50 
relative .......................... 50, 67 

PID controller ......................... 36 
differential term .................. 36 
integral term........................ 31 
parameters..................... 37, 88 
proportional term................ 36 

Pieter van Musschenbroek ....... 49 
piezoelectric effect .............. 2, 73 
piezos ......................................73 

butterfly diagram ................. 74 
creep ................................... 76 
dissipation ........................... 80 
drive amplifier ..................... 80 
hysteresis............................. 75 
large field properties ............ 74 
linearity............................... 76 
low field properties .............. 75 
mounting considerations...... 77 
noise.................................... 21 
power handling.................... 79 
practical .............................. 77 
resolution ............................ 80 
resonance ............................ 79 
under constant load.............. 78 
under spring load.................. 78 

pitch .............................. 6, 95, 96 
PMN.......................................... 2 
polarisation.............................. 73 
position .....................................5 

accuracy ........................ 17, 18 
bandwidth ............................ 15 
commanded ......................... 18 
desired................................. 20 
hysteresis............................. 92 
linearity......................... 19, 93 
mapping ..............................19 

coefficients..................... 20 
function .......................... 20 

measured................................ 7 
measured precision............... 18 
measurement .........................6 
noise.............................. 20, 92 
precision.............................. 18 
repeatability ........................ 24 
reproducibility .....................22 
resolution ...................... 15, 20 
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scale factor ..........................20 
true ....................7, 18, 20, 101 
trueness................................18 

positioning...............................17 
power series................................8 

reversing..................20, 32, 42 
precision ....................................5 

mapping.................................9 
measured position ................18 
measurement..........................7 
position ...............................18 

pre-load....................................77 
probe..................................51, 66 
proportional term ....................36 
PZT ...............................2, 73, 77 

Q 

Q factor ...................................34 
quantisation noise...............16, 26 
quartz...................................2, 73 

R 

random error ..............................7 
range ............................66, 82, 86 
repeatability 

measurement........................16 
position ...............................24 
uni-directional......................24 

reproducibility 
measurement........................16 
position ...............................22 

residual curve..............................9 
resolution .................................13 

command.............................21 
measurement........................13 

piezo ................................... 80 
position......................... 15, 20 

resonance ................................ 79 
resonant frequency ............ 34, 89 
ringing............................... 37, 38 
roll ................................ 6, 95, 96 
rotary capacitor....................... 50 
rotation ..................................... 5 
runout ...................................... 96 
rusting resistance ..................... 48 

S 

scale factor .............................. 87 
effect of plate bow.............. 63 
effect of plate tilt ................ 61 
measurement ......................... 9 
positioning.......................... 20 
uncertainty...................... 9, 87 
variation ............................. 11 

sensor 
hysteresis ............................ 16 
noise ................................... 13 

servo control........................... 27 
settling time ............................ 37 

fast ...................................... 88 
large signal .................... 41, 91 
medium ............................... 88 
slow..................................... 88 
small signal.............. 37, 41, 90 

slew rate ................ 38, 40, 79, 91 
slow settling time..................... 88 
small signal.............................. 41 

frequency response .............. 37 
settling time ............ 37, 41, 90 

specifications........................... 84 
spring strips............................. 83 

stainless steel ........................... 48 
stiffness ........... 34, 78, 79, 82, 88 
straight line................................ 8 
strain ......................................... 2 
stray capacitance ..................... 54 
SuperInvar ................... 44, 45, 47 
system units........................... 110 
systematic error ......................... 7 

T 

target ................................. 51, 66 
temperature control............... 100 
temperature gradient ................ 45 
temporal stability..................... 45 
thermal conductivity................ 45 
thermal expansion coefficient43, 86 
transfer function ...................... 27 
true position .......... 7, 18, 20, 101 
trueness......................................5 

mapping ................................ 9 
measurement ......................... 7 
position ............................... 18 

U 

uni-directional repeatability ..... 24 
up 6 

Y 

yaw................................ 6, 95, 96 
Young’s modulus................ 46, 86 

Z 

Zerodur .................... 3, 44, 45, 47 
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